爬虫学习笔记(十九)多进程多线程 2020.5.25

前言

本节学习多进程多线程

一些参考
Python的线程与进程
python的asyncio
python的异步编程

1、简介

进程(Process)

  • 对于操作系统来说,一个任务就是一个进程
  • 比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程

线程(thread)

  • 有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写检查、打印等事情
  • 在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,这些“子任务”称为线程

进程、线程、协程的区别

  • 多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。
  • 多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
  • 多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。
  • 协程的优势就是极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
  • 协程第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。

2、多进程

使用pool

from multiprocessing import Pool
def f(x):
    return x*x
if __name__ == '__main__':
    p = Pool(5)
    list = [1,2,3,4,5,6,7,8,9]
    print(p.map(f, list))

例子

import time
import requests
from multiprocessing import Pool
task_list = [
    'https://www.jianshu.com/p/91b702f4f24a',
    'https://www.jianshu.com/p/8e9e0b1b3a11',
    'https://www.jianshu.com/p/7ef0f606c10b',
    'https://www.jianshu.com/p/b117993f5008',
    'https://www.jianshu.com/p/583d83f1ff81',
    'https://www.jianshu.com/p/91b702f4f24a',
    'https://www.jianshu.com/p/8e9e0b1b3a11',
    'https://www.jianshu.com/p/7ef0f606c10b',
    'https://www.jianshu.com/p/b117993f5008',
    'https://www.jianshu.com/p/583d83f1ff81'
]
header = {
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 '
                      '(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
    }
def download(url):
    response = requests.get(url,headers=header,imeout=30)
    return response.status_code
if __name__ == '__main__':
    p = Pool(10)
    time_old = time.time()
    for item in p.map(download, task_list):
        print(item)
    time_new = time.time()
    time_cost = time_new - time_old
    print(time_cost)

使用Process对象

from multiprocessing import Process
def f(name):
    print('hello', name)
if __name__ == '__main__':
    p_1 = Process(target=f, args=('bob',))
    p_1.start()
    p_1.join()
    p_2 = Process(target=f, args=('alice',))
    p_2.start()
    p_2.join()

例子

import time
import requests
from multiprocessing import Process
task_list = [
    'https://www.jianshu.com/p/91b702f4f24a',
    'https://www.jianshu.com/p/8e9e0b1b3a11',
    'https://www.jianshu.com/p/7ef0f606c10b',
    'https://www.jianshu.com/p/b117993f5008',
    'https://www.jianshu.com/p/583d83f1ff81'
]
header = {
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 '
                      '(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
    }
def download(url):
    response = requests.get(url,headers=header,timeout=30)
    print(response.status_code)
if __name__ == '__main__':
    for item in task_list:
        p = Process(target=download, args=(item,))
        p.start()
        p.join()

3、多线程

了解下,不推荐使用
一个挂了就会全部挂掉

import threading
import time
class myThread(threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print("Starting " + self.name)
        # 获得锁,成功获得锁定后返回True
        # 可选的timeout参数不填时将一直阻塞直到获得锁定
        # 否则超时后将返回False
        threadLock.acquire()
        print_time(self.name, self.counter, 3)
        # 释放锁
        threadLock.release()
def print_time(threadName, delay, counter):
    while counter:
        time.sleep(delay)
        print("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1
threadLock = threading.Lock()
threads = []
# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# 开启新线程
thread1.start()
thread2.start()
# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)
# 等待所有线程完成
for t in threads:
    t.join()
print("Exiting Main Thread")

4、协程

ssl和loop

import aiohttp
import asyncio
import ssl
async def fetch(session, url):
    async with session.get(url,ssl=ssl.SSLContext()) as response:
        return await response.text()
async def main():
    async with aiohttp.ClientSession() as session:
        html = await fetch(session, 'http://www.baidu.com')
        print(html)
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

gather方法

import asyncio
async def a(t):
    print('-->', t)
    await asyncio.sleep(0.5) #把协程交给别的
    print('<--', t)
    return t * 10
def main():
    futs = [a(t) for t in range(6)]
    print(futs)
    ret = asyncio.gather(*futs)
    print(ret)
    loop = asyncio.get_event_loop()
    ret1 = loop.run_until_complete(ret)
    print(ret1)
main()

create_task()方法

import asyncio
async def a(t):
    print('-->', t)
    await asyncio.sleep(0.5)
    print('<--', t)
    return t * 10
async def b():
    # loop = asyncio.get_event_loop()
    cnt = 0
    while 1:
        cnt += 1
        cor = a(cnt)   # coroutine
        resp = loop.create_task(cor)
        await asyncio.sleep(0.1)
        print(resp)   
loop = asyncio.get_event_loop()
loop.run_until_complete(b())

5、例子

用asyncio和aiohttp抓取博客的总阅读量 (提示:先用接又找到每篇文章的链接)
https://www.jianshu.com/u/130f76596b02

import re
import asyncio
import aiohttp
import requests
import ssl
from lxml import etree
from asyncio.queues import Queue
from aiosocksy import Socks5Auth
from aiosocksy.connector import ProxyConnector, ProxyClientRequest
class Common():
    task_queue = Queue()
    result_queue = Queue()
    result_queue_1 = []
async def session_get(session,url,socks):
    auth = Socks5Auth(login='...', password='...')
    headers = {'User-Agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'}
    timeout = aiohttp.ClientTimeout(total=20)
    response = await session.get(
        url,
        proxy=socks,
        proxy_auth=auth,
        timeout=timeout,
        headers=headers,
        ssl=ssl.SSLContext()
    )
    return await response.text(), response.status
async def download(url):
    connector = ProxyConnector()
    socks = None
    async with aiohttp.ClientSession(
            connector = connector,
            request_class = ProxyClientRequest
    ) as session:
        ret, status = await session_get(session, url, socks)
        if 'window.location.href' in ret and len(ret) < 1000:
            url = ret.split("window.location.href='")[1].split("'")[0]
            ret, status = await session_get(session, url, socks)
        return ret, status
async def parse_html(content):
    read_num_pattern = re.compile(r'"views_count":\d+')
    read_num = int(read_num_pattern.findall(content)[0].split(':')[-1])
    return read_num
def get_all_article_links():
    links_list = []
    for i in range(1,21):
        url = 'https://www.jianshu.com/u/130f76596b02?order_by=shared_at&page={}'.format(i)
        header = {
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 '
                          '(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
        }
        response = requests.get(url,
                                headers=header,
                                timeout=5
                                )
        tree = etree.HTML(response.text)
        article_links = tree.xpath('//div[@class="content"]/a[@class="title"]/@href')
        for item in article_links:
            article_link = 'https://www.jianshu.com' + item
            links_list.append(article_link)
            print(article_link)
    return links_list
async def down_and_parse_task(queue):
    while 1:
        try:
            url = queue.get_nowait()
        except:
            return
        error = None
        for retry_cnt in range(3):
            try:
                html, status = await download(url)
                if status != 200:
                    html, status = await download(url)
                read_num = await parse_html(html)
                print(read_num)
                # await Common.result_queue.put(read_num)
                Common.result_queue_1.append(read_num)
                break
            except Exception as e:
                error = e
                await asyncio.sleep(0.2)
                continue
        else:
            raise error
async def count_sum():
    while 1:
        try:
            print(Common.result_queue_1)
            print('总阅读量 = ',sum(Common.result_queue_1))
            await asyncio.sleep(3)
        except:
            pass
async def main():
    all_links = get_all_article_links()
    for item in set(all_links):
        await Common.task_queue.put(item)
    for _ in range(10):
        loop.create_task(down_and_parse_task(Common.task_queue))
    loop.create_task(count_sum())
if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.create_task(main())
    loop.run_forever()

结语

了解了多进程和多线程的爬虫
不过最后的例子还没完全搞懂
先记一笔

你可能感兴趣的:(crawler)