使用hive分析nginx访问日志方法

以下案例是使用hive分析nginx的访问日志案例,其中字段分隔通过正则表达式匹配,具体步骤如下:

日志格式:
192.168.5.139 - - [08/Jun/2017:17:09:12 +0800] “GET //oportal/static/ui/layer/skin/default/icon.png HTTP/1.1” 200 9905 http://192.168.100.126//oportal/static/ui/layer/skin/layer.css “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36” -
192.168.5.139 - - [08/Jun/2017:17:09:25 +0800] “GET //oportal/page/homepage/images/icon-02.png HTTP/1.1” 200 1322 http://192.168.100.126//dsfdsal/page/homepage/css/indet.css “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36” -
192.168.5.139 - - [08/Jun/2017:17:09:25 +0800] “GET /dsfdortal/page/waittodo/waittodo.jsp?registesfsdame=%25E7%25BB%25BC%25E5%sdf2590%2588%25E9%25A2%2584%25E7%25AE%25sdf97®isterAsdfsdppid=bsdfsdas,ssdfsdfpf,bsdfsdgt,insdfsddi,hqrsdfdseport,hqosdfa,hqsfdsbi&resdfgisterId=FD748AA3sd82851A37F1693D3880C844EF&allviewsdfnum=10&appSource=undefined&tokenid=5728A0ED7998CC84B88FE8717A33FAB8aK79UkfS&waittodoNums=0&showway=0 HTTP/1.1” 200 3121 http://192.168.100.126//fposdfsdrtal/page/homdsfdepage/homepage.jsp?tokenid=5728A0ED7998CC84B88FE8717A33FAB8aK79UkfS “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36” -
192.168.5.139 - - [08/Jun/2017:17:09:25 +0800] “GET //fposdfgfrtal/page/waittodo/css/db_index.css HTTP/1.1” 200 6310 http://192.168.100.126/fpdsfdsfortal/page/waittodo/waittodo.jsp?registerName=%E7%BB%BC%E5%90%88%E9%A2%84%E7%AE%97®isterAppid=bas,spf,bgt,indi,hqreport,hqoa,hqbi®isterId=FD748AA382851A37F1693D3880C844EF&allviewnum=10&appSource=undefined&tokenid=5728A0ED7998CC84B88FE8717A33FAB8aK79UkfS&waittodoNums=0&showway=0 “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36” -

正则匹配:
测试网站:http://wpjam.qiniudn.com/tool/regexpal/

([^ |^\n]) ([^ ]) ([^ ]) ([.]) (".?") (-|[0-9]) (-|[0-9]) (".?") (".*?") (-)

建立原表:

drop table if exists chavin.nginx_access_log;
CREATE TABLE chavin.nginx_access_log(
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING,
other STRING)
ROW FORMAT SERDE ‘org.apache.hadoop.hive.contrib.serde2.RegexSerDe’
WITH SERDEPROPERTIES (
“input.regex” = “([^ |^\n]) ([^ ]) ([^ ]) (\[.\]) (”.?") (-|[0-9]) (-|[0-9]) (".?") (".*?") (-)",
“output.format.string” = “%1 s s %2 ss %3 s s %4 ss %5 s s %6 ss %7 s s %8 ss %9 s s %10 ss”
)
STORED AS TEXTFILE;

清除access.log日志中空白行:

sed -i ‘/^$/d’ access.log

加载access.log日志数据到hive中:

load data local inpath ‘/opt/datas/access.log’ overwrite into table chavin.nginx_access_log;

查询数据,进行验证:

select * from chavin.nginx_access_log limit 5;

接下来可以建立业务子表,进行定向分析了。

你可能感兴趣的:(使用hive分析nginx访问日志方法)