进阶Python 笔记

ch1 课程介绍

进阶Python 笔记_第1张图片

ch2 函数式编程


2.1 函数式编程

函数式:functional 一种编程范式
进阶Python 笔记_第2张图片
进阶Python 笔记_第3张图片
进阶Python 笔记_第4张图片

2.2 py中高阶函数

  • 变量可以指向函数

demo:

>>>abs(-10)
>10
>>>abs
><built - in function abs>
>>>f=abs
>>>f(-20)
>20
  • 函数名其实就是指向函数的变量
    demo:
>>>abs
><built - in function abs>
>>>abs=len
>>>abs(-10)
>Type Error:object of type'int' has no len()
>>>abs([1,2,3])
>3

进阶Python 笔记_第5张图片

2.3 python把函数作为参数

import math

def add(x, y, f):
    return f(x) + f(y)
    
print add(25, 9, math.sqrt)
>>>8

2.4 map()函数

map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回

例如,对于list [1, 2, 3, 4, 5, 6, 7, 8, 9]
我们只需要传入函数f(x)=x*x,就可以利用map()函数完成这个计算:

def f(x):
    return x*x;
print map(f,[1,2,3,4,5,6,7,8,9])
#[1, 4, 9, 10, 25, 36, 49, 64, 81]

注意:map()函数不改变原有的 list,而是返回一个新的 list。

利用map()函数,可以把一个 list 转换为另一个 list,只需要传入转换函数。

由于list包含的元素可以是任何类型,因此,map() 不仅仅可以处理只包含数值的 list,事实上它可以处理包含任意类型的 list,只要传入的函数f可以处理这种数据类型。

def format_name(s):
    return s[0].upper()+s[1:].lower();

print map(format_name, ['adam', 'LISA', 'barT'])
# ['Adam', 'Lisa', 'Bart']

2.6 reduce()函数

reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值

例如,编写一个f函数,接收x和y,返回x和y的和:

def f(x, y):
    return x + y

调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:

先计算头两个元素:f(1, 3),结果为4;
再把结果和第3个元素计算:f(4, 5),结果为9;
再把结果和第4个元素计算:f(9, 7),结果为16;
再把结果和第5个元素计算:f(16, 9),结果为25;
由于没有更多的元素了,计算结束,返回结果25。
上述计算实际上是对 list 的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。

reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,计算:

reduce(f, [1, 3, 5, 7, 9], 100)

结果将变为125,因为第一轮计算是:

计算初始值和第一个元素:f(100, 1),结果为101。

2.6 filter()

filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。

例如,要从一个list [1, 4, 6, 7, 9, 12, 17]中删除偶数,保留奇数,首先,要编写一个判断奇数的函数:

def is_odd(x):
    return x % 2 == 1

然后,利用filter()过滤掉偶数:

filter(is_odd, [1, 4, 6, 7, 9, 12, 17])

结果:[1, 7, 9, 17]

利用filter(),可以完成很多有用的功能,例如,删除 None 或者空字符串:

def is_not_empty(s):
    return s and len(s.strip()) > 0
filter(is_not_empty, ['test', None, '', 'str', '  ', 'END'])

结果:[‘test’, ‘str’, ‘END’]

  • 注意: s.strip(rm) 删除 s 字符串中开头、结尾处的 rm 序列的字符。

当rm为空时,默认删除空白符(包括’\n’, ‘\r’, ‘\t’, ’ '),如下:

a = '     123'
a.strip()
结果: '123'

a='\t\t123\r\n'
a.strip()
结果:'123'
  • 任务
    请利用filter()过滤出1~100中平方根是整数的数,即结果应该是:
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
import math

def is_sqr(x):
    r= int(math.sqrt(x))
    return r*r==x;

print filter(is_sqr, range(1, 101))

python中自定义排序函数

python中自定义排序函数
Python内置的 sorted()函数可对list进行排序:

    >>>sorted([36, 5, 12, 9, 21])
    [5, 9, 12, 21, 36]

sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面,返回 1。如果 x 和 y 相等,返回 0。

因此,如果我们要实现倒序排序,只需要编写一个reversed_cmp函数:

def reversed_cmp(x, y):
    if x > y:
        return -1
    if x < y:
        return 1
    return 0

这样,调用 sorted() 并传入 reversed_cmp 就可以实现倒序排序:

>>> sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]

sorted()也可以对字符串进行排序,字符串默认按照ASCII大小来比较:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']

2-8 python中返回函数

例如,定义一个函数 f(),我们让它返回一个函数 g,可以这样写:

def f():
    print 'call f()...'
    # 定义函数g:
    def g():
        print 'call g()...'
    # 返回函数g:
    return g

调用函数 f,我们会得到 f 返回的一个函数:

>>> x = f()   # 调用f()
call f()...
>>> x   # 变量x是f()返回的函数:
<function g at 0x1037bf320>
>>> x()   # x指向函数,因此可以调用
call g()...   # 调用x()就是执行g()函数定义的代码

请注意区分返回函数和返回值:

def myabs():
    return abs   # 返回函数
def myabs2(x):
    return abs(x)   # 返回函数调用的结果,返回值是一个数值

返回函数可以把一些计算延迟执行。例如,如果定义一个普通的求和函数:

def calc_sum(lst):
return sum(lst)
调用calc_sum()函数时,将立刻计算并得到结果:

>>> calc_sum([1, 2, 3, 4])
10

但是,如果返回一个函数,就可以“延迟计算”:

def calc_sum(lst):
    def lazy_sum():
        return sum(lst)
    return lazy_sum
#调用calc_sum()并没有计算出结果,而是返回函数:

>>> f = calc_sum([1, 2, 3, 4])
>>> f
<function lazy_sum at 0x1037bfaa0>
#对返回的函数进行调用时,才计算出结果:

>>> f()
10

由于可以返回函数,我们在后续代码里就可以决定到底要不要调用该函数。
任务
请编写一个函数calc_prod(lst),它接收一个list,返回一个函数,返回函数可以计算参数的乘积。

def calc_prod(lst):
    def lazy_prod():
        def f(x,y):
            return x*y
        return reduce(f,lst,1) 
    return lazy_prod

f = calc_prod([1, 2, 3, 4])
print f()

2-9 闭包

在函数内部定义的函数和外部定义的函数是一样的,只是他们无法被外部访问:

def g():
    print 'g()...'

def f():
    print 'f()...'
    return g

将 g 的定义移入函数 f 内部,防止其他代码调用 g:

def f():
    print 'f()...'
    def g():
        print 'g()...'
    return g

但是,考察上一小节定义的 calc_sum 函数:

def calc_sum(lst):
    def lazy_sum():
        return sum(lst)
    return lazy_sum

注意: 发现没法把 lazy_sum 移到 calc_sum 的外部,因为它引用了 calc_sum 的参数 lst。

像这种内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。

闭包的特点是返回的函数还引用了外层函数的局部变量,所以,要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。举例如下:

# 希望一次返回3个函数,分别计算1x1,2x2,3x3:
def count():
    fs = []
    for i in range(1, 4):
        def f():
             return i*i
        fs.append(f)
    return fs

f1, f2, f3 = count()

原因就是当count()函数返回了3个函数时,这3个函数所引用的变量 i 的值已经变成了3。由于f1、f2、f3并没有被调用,所以,此时他们并未计算 i*i,当 f1 被调用时:

>>> f1()
9     # 因为f1现在才计算i*i,但现在i的值已经变为3

因此,返回函数不要引用任何循环变量,或者后续会发生变化的变量。

  • 任务
    返回闭包不能引用循环变量,请改写count()函数,让它正确返回能计算1x1、2x2、3x3的函数。
def f(j):
    def g():
        return j*j
    return g
# 它可以正确地返回一个闭包g,g所引用的变量j不是循环变量,因此将正常执行。

# 在count函数的循环内部,如果借助f函数,就可以避免引用循环变量i。
def count():
    fs=[]
    for i in range(1,4):
        def f(j):
            def g():
                return j*j
            return g
        r=f(i)
        fs.append(r)
    return fs
    
f1,f2,f3=count()
print f1(),f2(),f3()

2-10 匿名函数

高阶函数可以接收函数做参数,有些时候,我们不需要显式地定义函数,直接传入匿名函数更方便。

在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算 f(x)=x2 时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

    >>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])
    [1, 4, 9, 16, 25, 36, 49, 64, 81]

通过对比可以看出,匿名函数 lambda x: x * x 实际上就是:

def f(x):
    return x * x

关键字lambda 表示匿名函数,冒号前面的 x 表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不写return,返回值就是该表达式的结果。

使用匿名函数,可以不必定义函数名,直接创建一个函数对象,很多时候可以简化代码:

    >>> sorted([1, 3, 9, 5, 0], lambda x,y: -cmp(x,y))
    [9, 5, 3, 1, 0]

返回函数的时候,也可以返回匿名函数:

    >>> myabs = lambda x: -x if x < 0 else x 
    >>> myabs(-1)
    1
    >>> myabs(1)
    1

2.11 decorator 装饰器

进阶Python 笔记_第6张图片
进阶Python 笔记_第7张图片

进阶Python 笔记_第8张图片
进阶Python 笔记_第9张图片

进阶Python 笔记_第10张图片

进阶Python 笔记_第11张图片
进阶Python 笔记_第12张图片

2.12 编写无参数decorator

Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数。
使用 decorator 用Python提供的 @ 语法,这样可以避免手动编写 f = decorate(f) 这样的代码。

考察一个@log的定义:

    def log(f):
        def fn(x):
            print 'call ' + f.__name__ + '()...'
            return f(x)
        return fn

对于阶乘函数,@log工作得很好:

    @log
    def factorial(n):
        return reduce(lambda x,y: x*y, range(1, n+1))
    print factorial(10)

结果:

    call factorial()...
    3628800

但是,对于参数不是一个的函数,调用将报错:

    @log
    def add(x, y):
        return x + y
    print add(1, 2)

结果:

    Traceback (most recent call last):
      File "test.py", line 15, in <module>
        print add(1,2)
    TypeError: fn() takes exactly 1 argument (2 given)

因为 add() 函数需要传入两个参数,但是 @log 写死了只含一个参数的返回函数。

要让 @log 自适应任何参数定义的函数,可以利用Python的 args 和 kw,保证任意个数的参数总是能正常调用

    def log(f):
        def fn(*args, **kw):
            print 'call ' + f.__name__ + '()...'
            return f(*args, **kw)
        return fn

现在,对于任意函数,@log 都能正常工作。

2-13 编写带参数decorator

2-14 完善decorator

2-15 偏函数

当一个函数有很多参数时,调用者就需要提供多个参数。如果减少参数个数,就可以简化调用者的负担。

比如,int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

    >>> int('12345')
    12345

但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做 N 进制的转换:

    >>> int('12345', base=8)
    5349
    >>> int('12345', 16)
    74565

假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

    def int2(x, base=2):
        return int(x, base)

这样,我们转换二进制就非常方便了:

    >>> int2('1000000')
    64
    >>> int2('1010101')
    85

** functools.partial 就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:**

    >>> import functools
    >>> int2 = functools.partial(int, base=2)
    >>> int2('1000000')
    64
    >>> int2('1010101')
    85

所以,functools.partial可以把一个参数多的函数变成一个参数少的新函数,少的参数需要在创建时指定默认值,这样,新函数调用的难度就降低了。

ch3 模块


3-1 模块&包

进阶Python 笔记_第13张图片

3-2 导入模块

要使用一个模块,我们必须首先导入该模块。Python使用import语句导入一个模块。例如,导入系统自带的模块 math:

    import math

你可以认为math就是一个指向已导入模块的变量,通过该变量,我们可以访问math模块中所定义的所有公开的函数、变量和类:

    >>> math.pow(2, 0.5) # pow是函数
    1.4142135623730951
    
    >>> math.pi # pi是变量
    3.141592653589793

如果我们只希望导入用到的math模块的某几个函数,而不是所有函数,可以用下面的语句:

    from math import pow, sin, log

这样,可以直接引用 pow, sin, log 这3个函数,但math的其他函数没有导入进来:

    >>> pow(2, 10)
    1024.0
    >>> sin(3.14)
    0.0015926529164868282

如果遇到名字冲突怎么办?比如math模块有一个log函数,logging模块也有一个log函数,如果同时使用,如何解决名字冲突?

如果使用import导入模块名,由于必须通过模块名引用函数名,因此不存在冲突:

    import math, logging
    print math.log(10)   # 调用的是math的log函数
    logging.log(10, 'something')   # 调用的是logging的log函数

如果使用 from…import 导入 log 函数,势必引起冲突。这时,可以给函数起个“别名”来避免冲突:

    from math import log
    from logging import log as logger   # logging的log现在变成了logger
    print log(10)   # 调用的是math的log
    logger(10, 'import from logging')   # 调用的是logging的log

动态导入模块

如果导入的模块不存在,Python解释器会报 ImportError 错误:

    >>> import something
    Traceback (most recent call last):
      File "", line 1, in <module>
    ImportError: No module named something

有的时候,两个不同的模块提供了相同的功能,比如 StringIO 和 cStringIO 都提供了StringIO这个功能。

这是因为Python是动态语言,解释执行,因此Python代码运行速度慢。

如果要提高Python代码的运行速度,最简单的方法是把某些关键函数用 C 语言重写,这样就能大大提高执行速度。

同样的功能,StringIO 是纯Python代码编写的,而 cStringIO 部分函数是 C 写的,因此 cStringIO 运行速度更快。

利用ImportError错误,我们经常在Python中动态导入模块:

    try:
        from cStringIO import StringIO
    except ImportError:
        from StringIO import StringIO

上述代码先尝试从cStringIO导入,如果失败了(比如cStringIO没有被安装),再尝试从StringIO导入。这样,如果cStringIO模块存在,则我们将获得更快的运行速度,如果cStringIO不存在,则顶多代码运行速度会变慢,但不会影响代码的正常执行。

try 的作用是捕获错误,并在捕获到指定错误时执行 except 语句。

3-4 使用__future__

Python的新版本会引入新的功能,但是,实际上这些功能在上一个老版本中就已经存在了。要“试用”某一新的特性,就可以通过导入__future__模块的某些功能来实现。

例如,Python 2.7的整数除法运算结果仍是整数:

    >>> 10 / 3
    3

但是,Python 3.x已经改进了整数的除法运算,“/”除将得到浮点数,“//”除才仍是整数:

    >>> 10 / 3
    3.3333333333333335
    >>> 10 // 3
    3

要在Python 2.7中引入3.x的除法规则,导入__future__的division:

    >>> from __future__ import division
    >>> print 10 / 3
    3.3333333333333335

当新版本的一个特性与旧版本不兼容时,该特性将会在旧版本中添加到__future__中,以便旧的代码能在旧版本中测试新特性。

3-5 安装第三块模块

进阶Python 笔记_第14张图片

ch4 面向对象编程

4-1 面向对象编程

4-2 定义类并创建实例

class Person(object):
    pass

xiaoming = Person()
xiaohong = Person()

print xiaoming
print xiaohong
print xiaoming==xiaohong
#<__main__.Person object at 0x7f3fa9c06450>
#<__main__.Person object at 0x7f3fa9b45ad0>
#False

4-3 创建实例数学

class Person(object):
    pass

p1 = Person()
p1.name = 'Bart'

p2 = Person()
p2.name = 'Adam'

p3 = Person()
p3.name = 'Lisa'

L1 = [p1, p2, p3]
L2 = sorted(L1, lambda p1, p2: cmp(p1.name, p2.name))

print L2[0].name
print L2[1].name
print L2[2].name

#Adam
#Bart
#Lisa

4-4 初始化实力属性

虽然我们可以自由地给一个实例绑定各种属性,但是,现实世界中,一种类型的实例应该拥有相同名字的属性。例如,Person类应该在创建的时候就拥有 name、gender 和 birth 属性,怎么办?

在定义 Person 类时,可以为Person类添加一个特**殊的__init__()方法,**当创建实例时,init()方法被自动调用,我们就能在此为每个实例都统一加上以下属性:

    class Person(object):
        def __init__(self, name, gender, birth):
            self.name = name
            self.gender = gender
            self.birth = birth

init() 方法的第一个参数必须是 self(也可以用别的名字,但建议使用习惯用法),后续参数则可以自由指定,和定义函数没有任何区别。

相应地,创建实例时,就必须要提供除 self 以外的参数:

    xiaoming = Person('Xiao Ming', 'Male', '1991-1-1')
    xiaohong = Person('Xiao Hong', 'Female', '1992-2-2')

有了__init__()方法,每个Person实例在创建时,都会有 name、gender 和 birth 这3个属性,并且,被赋予不同的属性值,访问属性使用.操作符:

    print xiaoming.name
    # 输出 'Xiao Ming'
    print xiaohong.birth
    # 输出 '1992-2-2'

要特别注意的是,初学者定义__init__()方法常常忘记了 self 参数:

    >>> class Person(object):
    ...     def __init__(name, gender, birth):
    ...         pass
    ... 
    >>> xiaoming = Person('Xiao Ming', 'Male', '1990-1-1')
    Traceback (most recent call last):
      File "", line 1, in <module>
    TypeError: __init__() takes exactly 3 arguments (4 given)

这会导致创建失败或运行不正常,因为第一个参数name被Python解释器传入了实例的引用,从而导致整个方法的调用参数位置全部没有对上。

**要定义关键字参数,使用 kw;

除了可以直接使用self.name = 'xxx’设置一个属性外,还可以通过 setattr(self, ‘name’, ‘xxx’) 设置属性。

4-5 访问限制

我们可以给一个实例绑定很多属性,如果有些属性不希望被外部访问到怎么办?

Python对属性权限的控制是通过属性名来实现的,如果一个属性由双下划线开头(__),该属性就无法被外部访问。看例子:

    class Person(object):
        def __init__(self, name):
            self.name = name
            self._title = 'Mr'
            self.__job = 'Student'
    p = Person('Bob')
    print p.name
    # => Bob
    print p._title
    # => Mr
    print p.__job
    # => Error
    Traceback (most recent call last):
      File "", line 1, in <module>
    AttributeError: 'Person' object has no attribute '__job'
    

但是,如果一个属性以"xxx"的形式定义,那它又可以被外部访问了,以"xxx"定义的属性在Python的类中被称为特殊属性,有很多预定义的特殊属性可以使用,通常我们不要把普通属性用"xxx"定义。

以单下划线开头的属性"_xxx"虽然也可以被外部访问,但是,按照习惯,他们不应该被外部访问。

4-6 创建类属性

类是模板,而实例则是根据类创建的对象。

绑定在一个实例上的属性不会影响其他实例,但是,类本身也是一个对象,如果在类上绑定一个属性,则所有实例都可以访问类的属性,并且,所有实例访问的类属性都是同一个!也就是说,实例属性每个实例各自拥有,互相独立,而类属性有且只有一份。

定义类属性可以直接在 class 中定义:

    class Person(object):
        address = 'Earth'
        def __init__(self, name):
            self.name = name

因为类属性是直接绑定在类上的,所以,访问类属性不需要创建实例,就可以直接访问:

    print Person.address
    # => Earth

对一个实例调用类的属性也是可以访问的,所有实例都可以访问到它所属的类的属性:

    p1 = Person('Bob')
    p2 = Person('Alice')
    print p1.address
    # => Earth
    print p2.address
    # => Earth

由于Python是动态语言,类属性也是可以动态添加和修改的:

    Person.address = 'China'
    print p1.address
    # => 'China'
    print p2.address
    # => 'China'

因为类属性只有一份,所以,当Person类的address改变时,所有实例访问到的类属性都改变了。

4-7 类属性和实例属性名字冲突怎么办

可见,当实例属性和类属性重名时,实例属性优先级高,它将屏蔽掉对类属性的访问。可见,千万不要在实例上修改类属性,它实际上并没有修改类属性,而是给实例绑定了一个实例属性。

4-8 定义实例方法

4-9 方法也是属性

4-10 定义类方法

和属性类似,方法也分实例方法和类方法。

在class中定义的全部是实例方法,实例方法第一个参数 self 是实例本身。

要在class中定义类方法,需要这么写:

    class Person(object):
        count = 0
        @classmethod
        def how_many(cls):
            return cls.count
        def __init__(self, name):
            self.name = name
            Person.count = Person.count + 1
    
    print Person.how_many()
    p1 = Person('Bob')
    print Person.how_many()

通过标记一个 @classmethod,该方法将绑定到 Person 类上,而非类的实例。类方法的第一个参数将传入类本身,通常将参数名命名为 cls,上面的 cls.count 实际上相当于 Person.count。
因为是在类上调用,而非实例上调用,因此类方法无法获得任何实例变量,只能获得类的引用。

ch5 类的继承

5.2 继承一个类

如果已经定义了Person类,需要定义新的Student和Teacher类时,可以直接从Person类继承:

    class Person(object):
        def __init__(self, name, gender):
            self.name = name
            self.gender = gender

定义Student类时,只需要把额外的属性加上,例如score:

    class Student(Person):
        def __init__(self, name, gender, score):
            super(Student, self).__init__(name, gender)
            self.score = score

一定要用 super(Student, self).init(name, gender) 去初始化父类,否则,继承自 Person 的 Student 将没有 name 和 gender。

函数super(Student, self)将返回当前类继承的父类,即 Person ,然后调用__init__()方法,注意self参数已在super()中传入,在__init__()中将隐式传递,不需要写出(也不能写)。

5-3 判断类型

**函数isinstance()**可以判断一个变量的类型,既可以用在Python内置的数据类型如str、list、dict,也可以用在我们自定义的类,它们本质上都是数据类型。

假设有如下的 Person、Student 和 Teacher 的定义及继承关系如下:


class Person(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender

class Student(Person):
    def __init__(self, name, gender, score):
        super(Student, self).__init__(name, gender)
        self.score = score

class Teacher(Person):
    def __init__(self, name, gender, course):
        super(Teacher, self).__init__(name, gender)
        self.course = course

p = Person('Tim', 'Male')
s = Student('Bob', 'Male', 88)
t = Teacher('Alice', 'Female', 'English')

当我们拿到变量 p、s、t 时,可以使用 isinstance 判断类型:

>>> isinstance(s, Person)
True    # s是Person类型
>>> isinstance(s, Student)
True    # s是Student类型
>>> isinstance(s, Teacher)
False   # s不是Teacher类型

这说明在一条继承链上,一个实例可以看成它本身的类型,也可以看成它父类的类型。

5-4 多态

类具有继承关系,并且子类类型可以向上转型看做父类类型,如果我们从 Person 派生出 Student和Teacher ,并都写了一个 whoAmI() 方法:

class Person(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender
    def whoAmI(self):
        return 'I am a Person, my name is %s' % self.name

class Student(Person):
    def __init__(self, name, gender, score):
        super(Student, self).__init__(name, gender)
        self.score = score
    def whoAmI(self):
        return 'I am a Student, my name is %s' % self.name

class Teacher(Person):
    def __init__(self, name, gender, course):
        super(Teacher, self).__init__(name, gender)
        self.course = course
    def whoAmI(self):
        return 'I am a Teacher, my name is %s' % self.name
       

在一个函数中,如果我们接收一个变量 x,则无论该 x 是 Person、Student还是 Teacher,都可以正确打印出结果:

def who_am_i(x):
    print x.whoAmI()

p = Person('Tim', 'Male')
s = Student('Bob', 'Male', 88)
t = Teacher('Alice', 'Female', 'English')

who_am_i(p)
who_am_i(s)
who_am_i(t)
运行结果:

I am a Person, my name is Tim
I am a Student, my name is Bob
I am a Teacher, my name is Alice

这种行为称为多态。也就是说,方法调用将作用在 x 的实际类型上。s 是Student类型,它实际上拥有自己的 whoAmI()方法以及从 Person继承的 whoAmI方法,但调用 s.whoAmI()总是先查找它自身的定义,如果没有定义,则顺着继承链向上查找,直到在某个父类中找到为止

由于Python是动态语言,所以,传递给函数 who_am_i(x)的参数 x 不一定是 Person 或 Person 的子类型。任何数据类型的实例都可以,只要它有一个whoAmI()的方法即可:

class Book(object):
    def whoAmI(self):
        return 'I am a book'

这是动态语言和静态语言(例如Java)最大的差别之一。动态语言调用实例方法,不检查类型,只要方法存在,参数正确,就可以调用。

5-5 多重继承

5-6 获取对象信息

拿到一个变量,除了用 isinstance() 判断它是否是某种类型的实例外,还有没有别的方法获取到更多的信息呢?

例如,已有定义:

class Person(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender

class Student(Person):
    def __init__(self, name, gender, score):
        super(Student, self).__init__(name, gender)
        self.score = score
    def whoAmI(self):
        return 'I am a Student, my name is %s' % self.name
       

首先可以用 type() 函数获取变量的类型,它返回一个 Type 对象:


>>> type(123)
<type 'int'>
>>> s = Student('Bob', 'Male', 88)
>>> type(s)
<class '__main__.Student'>

其次,可以用 dir() 函数获取变量的所有属性:

>>> dir(123)   # 整数也有很多属性...
['__abs__', '__add__', '__and__', '__class__', '__cmp__', ...]

>>> dir(s)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'gender', 'name', 'score', 'whoAmI']

对于实例变量,dir()返回所有实例属性,包括__class__这类有特殊意义的属性。注意到方法whoAmI也是 s 的一个属性。

如何去掉__xxx__这类的特殊属性,只保留我们自己定义的属性?回顾一下**filter()**函数的用法。

**dir()**返回的属性是字符串列表,如果已知一个属性名称,要获取或者设置对象的属性,就需要用 getattr() 和 setattr( )函数了:

>>> getattr(s, 'name')  # 获取name属性
'Bob'

>>> setattr(s, 'name', 'Adam')  # 设置新的name属性

>>> s.name
'Adam'

>>> getattr(s, 'age')  # 获取age属性,但是属性不存在,报错:
Traceback (most recent call last):
  File "", line 1, in <module>
AttributeError: 'Student' object has no attribute 'age'

>>> getattr(s, 'age', 20)  # 获取age属性,如果属性不存在,就返回默认值20:
20

ch6 定制类

6-1 什么是特殊方法

进阶Python 笔记_第15张图片
进阶Python 笔记_第16张图片进阶Python 笔记_第17张图片

6-2 __str 和__repr

如果要把一个类的实例变成 str,就需要实现特殊方法__str__():

    class Person(object):
        def __init__(self, name, gender):
            self.name = name
            self.gender = gender
        def __str__(self):
            return '(Person: %s, %s)' % (self.name, self.gender)

现在,在交互式命令行下用 print 试试:

    >>> p = Person('Bob', 'male')
    >>> print p
    (Person: Bob, male)
    但是,如果直接敲变量 p:
    
    >>> p
    <main.Person object at 0x10c941890>

似乎__str__() 不会被调用。

因为 Python 定义了__str__()和__repr__()两种方法,str()用于显示给用户,而__repr__()用于显示给开发人员。

有一个偷懒的定义__repr__的方法:

    class Person(object):
        def __init__(self, name, gender):
            self.name = name
            self.gender = gender
        def __str__(self):
            return '(Person: %s, %s)' % (self.name, self.gender)
    __repr__ = __str__

6-3 cmp

对 int、str 等内置数据类型排序时,Python的 sorted() 按照默认的比较函数 cmp 排序,但是,如果对一组 Student 类的实例排序时,就必须提供我们自己的特殊方法 cmp()


class Student(object):
    def __init__(self, name, score):
        self.name = name
        self.score = score
    def __str__(self):
        return '(%s: %s)' % (self.name, self.score)
    __repr__ = __str__

    def __cmp__(self, s):
        if self.name < s.name:
            return -1
        elif self.name > s.name:
            return 1
        else:
            return 0

上述 Student 类实现了__cmp__()方法,__cmp__用实例自身self和传入的实例 s 进行比较,如果 self 应该排在前面,就返回 -1,如果 s 应该排在前面,就返回1,如果两者相当,返回 0

Student类实现了按name进行排序:

>>> L = [Student('Tim', 99), Student('Bob', 88), Student('Alice', 77)]
>>> print sorted(L)
[(Alice: 77), (Bob: 88), (Tim: 99)]

6-4 len

如果一个类表现得像一个list,要获取有多少个元素,就得用 len() 函数。

要让 len() 函数工作正常,类必须提供一个特殊方法__len__(),它返回元素的个数。

例如,我们写一个 Students 类,把名字传进去:

class Students(object):
    def __init__(self, *args):
        self.names = args
    def __len__(self):
        return len(self.names)

只要正确实现了__len__()方法,就可以用len()函数返回Students实例的“长度”:

>>> ss = Students('Bob', 'Alice', 'Tim')
>>> print len(ss)
3

6-5 数学运算

Python 提供的基本数据类型 int、float 可以做整数和浮点的四则运算以及乘方等运算。

但是,四则运算不局限于int和float,还可以是有理数、矩阵等。

要表示有理数,可以用一个Rational类来表示

class Rational(object):
    def __init__(self, p, q):
        self.p = p
        self.q = q

p、q 都是整数,表示有理数 p/q。

如果要让Rational进行+运算,需要正确实现__add__:

class Rational(object):
    def __init__(self, p, q):
        self.p = p
        self.q = q
    def __add__(self, r):
        return Rational(self.p * r.q + self.q * r.p, self.q * r.q)
    def __str__(self):
        return '%s/%s' % (self.p, self.q)
    __repr__ = __str__

现在可以试试有理数加法:

>>> r1 = Rational(1, 3)
>>> r2 = Rational(1, 2)
>>> print r1 + r2
5/6

6-6 类型转换

Rational类实现了有理数运算,但是,如果要把结果转为 int 或 float 怎么办?

考察整数和浮点数的转换:

>>> int(12.34)
12
>>> float(12)
12.0
如果要把 Rational 转为 int,应该使用:

r = Rational(12, 5)
n = int(r)

要让int()函数正常工作,只需要实现特殊方法__int__():

class Rational(object):
    def __init__(self, p, q):
        self.p = p
        self.q = q
    def __int__(self):
        return self.p // self.q

结果如下:

>>> print int(Rational(7, 2))
3
>>> print int(Rational(1, 3))
0

同理,要让float()函数正常工作,只需要实现特殊方法__float__()。

6-7 @property

考察 Student 类:

class Student(object):
    def __init__(self, name, score):
        self.name = name
        self.score = score

当我们想要修改一个 Student 的 scroe 属性时,可以这么写:

s = Student('Bob', 59)
s.score = 60

是也可以这么写:

s.score = 1000
显然,直接给属性赋值无法检查分数的有效性。

如果利用两个方法:

class Student(object):
    def __init__(self, name, score):
        self.name = name
        self.__score = score
    def get_score(self):
        return self.__score
    def set_score(self, score):
        if score < 0 or score > 100:
            raise ValueError('invalid score')
        self.__score = score

这样一来,s.set_score(1000) 就会报错。

这种使用 get/set 方法来封装对一个属性的访问在许多面向对象编程的语言中都很常见。

但是写 s.get_score() 和 s.set_score() 没有直接写 s.score 来得直接。

有没有两全其美的方法?----有。

因为Python支持高阶函数,在函数式编程中我们介绍了装饰器函数,可以用装饰器函数把 get/set 方法“装饰”成属性调用:

class Student(object):
    def __init__(self, name, score):
        self.name = name
        self.__score = score
    @property
    def score(self):
        return self.__score
    @score.setter
    def score(self, score):
        if score < 0 or score > 100:
            raise ValueError('invalid score')
        self.__score = score

意: 第一个score(self)是get方法,用@property装饰,第二个score(self, score)是set方法,用@score.setter装饰,@score.setter是前一个@property装饰后的副产品。

现在,就可以像使用属性一样设置score了:

>>> s = Student('Bob', 59)
>>> s.score = 60
>>> print s.score
60
>>> s.score = 1000
Traceback (most recent call last):
  ...
ValueError: invalid score
说明对 score 赋值实际调用的是 set方法。

6-8 slots

由于Python是动态语言,任何实例在运行期都可以动态地添加属性。

如果要限制添加的属性,例如,Student类只允许添加 name、gender和score 这3个属性,就可以利用Python的一个特殊的__slots__来实现。

顾名思义,__slots__是指一个类允许的属性列表:

class Student(object):
    __slots__ = ('name', 'gender', 'score')
    def __init__(self, name, gender, score):
        self.name = name
        self.gender = gender
        self.score = score

现在,对实例进行操作:

>>> s = Student('Bob', 'male', 59)
>>> s.name = 'Tim' # OK
>>> s.score = 99 # OK
>>> s.grade = 'A'
Traceback (most recent call last):
  ...
AttributeError: 'Student' object has no attribute 'grade'

__slots__的目的是限制当前类所能拥有的属性,如果不需要添加任意动态的属性,使用__slots__也能节省内存。

6-9 call

python中 call
在Python中,函数其实是一个对象:

>>> f = abs
>>> f.__name__
'abs'
>>> f(-123)
123

由于 f 可以被调用,所以,f 被称为可调用对象。

所有的函数都是可调用对象。

一个类实例也可以变成一个可调用对象,只需要实现一个特殊方法__call__()。

我们把 Person 类变成一个可调用对象:

class Person(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender

    def __call__(self, friend):
        print 'My name is %s...' % self.name
        print 'My friend is %s...' % friend

现在可以对 Person 实例直接调用:

>>> p = Person('Bob', 'male')
>>> p('Tim')
My name is Bob...
My friend is Tim...
单看 p('Tim') 你无法确定 p 是一个函数还是一个类实例,所以,在Python中,函数也是对象,对象和函数的区别并不显著。

ch7 课程总结

进阶Python 笔记_第18张图片

  • 该笔记为慕课网视频课 python进阶 的个人笔记。

你可能感兴趣的:(Python)