- Spring中如何使用AI
Mn孟
spring人工智能java后端
Spring是一个用于构建Java应用程序的开源框架,它可以与各种AI技术集成。要在Spring中使用AI,首先需要选择一种AI技术,如机器学习、自然语言处理等。然后可以使用SpringBoot来构建应用程序,并使用相应的AI框架或库来实现AI功能。例如,可以使用TensorFlow或PyTorch来实现机器学习功能,使用NLTK或spaCy来实现自然语言处理功能。此外,还可以使用SpringCl
- Orange3实战教程:文本挖掘---情感分析
err2008
Orange3实战教程数据挖掘深度学习机器学习人工智能自然语言处理神经网络orange3中文版
情感分析预测文本的情感倾向。输入语料库(Corpus):一组文档的集合。输出语料库(Corpus):包含每个文档情感信息的语料库。情感分析为语料库中的每个文档预测情感倾向。该方法使用了来自NLTK的Liu&Hu和Vader情感分析模块,DataScienceLab的多语言情感词典,ArthurJacobs的SentiArt,以及WalterDaelemans等人的LiLaH情感词典。所有方法均基于
- 自然语言处理(NLP)核心技术:从词嵌入到Transformer
软考和人工智能学堂
人工智能#深度学习Python开发经验自然语言处理transformer人工智能
1.NLP基础与文本表示1.1文本预处理技术importreimportnltkfromnltk.corpusimportstopwordsfromnltk.stemimportPorterStemmer,WordNetLemmatizernltk.download('punkt')nltk.download('stopwords')nltk.download('wordnet')defprepr
- Python情感分析实战:基于情感词典的实现
Kiki-2189
本文还有配套的精品资源,点击获取简介:本主题介绍如何使用Python进行基于情感词典的情感分析,涵盖数据预处理、情感词典应用、特征提取、情感计算等关键步骤。将通过实例演示如何利用Python的nltk、sklearn、TextBlob等库来完成这些任务,并讨论如何处理大规模数据集以及情感分析在实际应用中的用途。1.情感分析概述情感分析,也称为意见挖掘或情绪分析,是从文本数据中提取主观信息的技术。它
- 大语言模型 vs NLTK/SpaCy:NLP工具的代际跃迁与互补之道
赛卡
自然语言处理语言模型人工智能
大语言模型vsNLTK/SpaCy:NLP工具的代际跃迁与互补之道技术代际差异:从「工具包」到「智能体」的进化如果说NLTK和SpaCy是「文本处理的瑞士军刀」,那么大语言模型(LLMs)就是「会思考的AI助手」。这种代际差异体现在三个层面:1.能力维度的颠覆式突破基础任务:大模型通过「上下文学习」实现零样本/少样本分词、词性标注,如GPT-4在CoT提示下的分词准确率可达98.7%,与SpaCy
- 用Python写一个简单聊天机器人
大Q大哥
机器人python
简单聊天机器人基于Python中的nltk库和简单的规则匹配实现。那首先呢,我们需要安装nltk库和相关资源:pipinstallnltk然后,我们可以使用以下代码导入所需的库和资源,并定义一个简单的匹配函数:importrandomimportreimportnltkfromnltk.corpusimportwordnetnltk.download('punkt')nltk.download('
- python 英语分词_自然语言处理 | NLTK英文分词尝试
weixin_39640687
python英语分词
NLTK是一个高效的Python构建的平台,用来处理自然语言数据,它提供了易于使用的接口,通过这些接口可以访问超过50个语料库和词汇资源(如WordNet),还有一套用于分类、标记化、词干标记、解析和语义推理的文本处理库。NLTK可以在Windows、MacOS以及Linux系统上使用。1.安装NLTK使用pipinstallnltk命令安装NLTK库,NLTK中集成了语料与模型等的包管理器,通过
- nltk-提取词干-去除停用词
bymaymay
机器学习gitlinux自然语言处理
fromnltk.corpusimportstopwordsHereisthelist:set(stopwords.words(‘english’)){‘ourselves’,‘hers’,‘between’,‘yourself’,‘but’,‘again’,‘there’,‘about’,‘once’,‘during’,‘out’,‘very’,‘having’,‘with’,‘they’,‘o
- nltk-英文句子分词+词干化
Jo乔戈里
c#开发语言
一、准备工作①安装好nltk模块并在:nltk/nltk_data:NLTKData链接中手动下载模型并放入到对应文件夹下。具体放到哪个文件夹,先执行看报错后的提示即可。②准备pos_map.json文件,放置到当前文件夹下。该文件用于词性统一{"NN":"n","NNS":"n","NNP":"n","NNPS":"n","PRP":"n","PRP$":"n","VB":"v","VBD":"
- Python贝叶斯算法进行文本主客观分析(采用文本双词模型)
lsdnh521
机器学习/大数据
from__future__importdivisionimportrefromnumpyimportones,arrayfromnumpy.lib.scimathimportlogfromnltkimport*defloadDataSet():obj=open("obj_train_data.txt",'r')sbj=open("sbj_train_data.txt",'r')lst_all=[
- Python实例题:Python实现英文新闻摘要自动提取
狐凄
实例python开发语言
目录Python实例题题目实现思路代码实现代码解释preprocess_text函数:extract_summary函数:主程序:运行思路注意事项Python实例题题目Python实现英文新闻摘要自动提取实现思路数据准备:读取英文新闻文本。文本预处理:使用nltk对新闻文本进行分词、去除停用词等操作。摘要提取:使用sumy库中的算法提取新闻摘要。结果输出:输出提取的摘要。代码实现importnlt
- Python文本数据清洗五步法:打造高质量NLP分析数据
真智AI
python自然语言处理开发语言
文本数据清洗对任何包含文本的分析或机器学习项目来说都是至关重要的,尤其是自然语言处理(NLP)或文本分析类的任务。原始文本通常存在错误、不一致以及多余信息,这些都会影响分析结果。常见问题包括拼写错误、特殊字符、多余空格以及格式不正确等。手动清洗文本数据不仅耗时,而且容易出错,尤其是在处理大规模数据集时。Python生态系统提供了如Pandas、re、NLTK和spaCy等工具,能够实现自动化处理。
- Python NLTK库【NLP核心库】全面解析
老胖闲聊
python自然语言处理开发语言
以下是关于PythonNLTK(NaturalLanguageToolkit)库的全面深入讲解,涵盖核心功能、应用场景及代码示例:NLTK库基础一、NLTK简介NLTK是Python中用于自然语言处理(NLP)的核心库,提供了丰富的文本处理工具、算法和语料库。主要功能包括:文本预处理(分词、词干提取、词形还原)句法分析(词性标注、分块、句法解析)语义分析(命名实体识别、情感分析)语料库管理(内置多
- Python分词、情感分析工具——SnowNLP
weixin_30457465
本文内容主要参考GitHub:https://github.com/isnowfy/snownlpwhat'stheSnowNLPSnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并
- 阀门轴承电动车工件一键精修软件
WinDaWangGong
分享人工智能
若需定制开发“ComfyUI意见精修软件”技术栈建议:前端:React/Vue+Figma插件API(直接读取设计稿)。后端:Node.js/Python+NLP库(spaCy/NLTK)。数据库:MongoDB(存储非结构化反馈数据)。核心功能:嵌入反馈按钮到UI原型中,支持标注截图反馈。AI自动归类反馈类型(如布局、交互、视觉)。生成可视化报告,对比优化前后的用户满意度。
- 从零开始:创建你的第一个聊天机器人
master_chenchengg
pythonpython办公效率python开发IT
从零开始:创建你的第一个聊天机器人为什么聊天机器人如此流行Python在聊天机器人开发中的优势快速入门:使用ChatterBot构建对话系统ChatterBot简介:如何快速搭建一个聊天机器人自定义对话流程:让机器人更聪明深入浅出:理解自然语言处理(NLP)基础NLP是什么:从词汇到句子的理解Python中的NLP工具:NLTK与spaCy的应用NLTK简介spaCy简介实战演练:为你的聊天机器人
- OCC模块介绍
3333yyt
OCCc++3d图形渲染算法
OCC模块介绍1、OCCT介绍1、基础类——FoundationClasses2、模型数据——ModelingData3、模型算法ModelingAlgorithms4、可视化5、数据交换6、应用框架7、绘制测试工具1、OCCT介绍模块:ApplicationFrameworkTKBinTKBinLTKBinTObjTKCAFTKCDFTKLCAFTKStdTKStdLTKTObjTKVCAFTK
- 训练数据清洗(文本/音频/视频)
Psycho_MrZhang
工具音视频
多数据格式的清洗方法以下是针对多数据格式清洗方法的系统性总结,结合Python代码示例:一、数据清洗方法总览(表格对比)数据类型核心挑战关键步骤常用Python工具文本非结构化噪声去噪→分词→标准化→向量化NLTK,SpaCy,Jieba,Regex图片维度/质量差异尺寸统一→去噪→格式转换→归一化OpenCV,PIL,scikit-image音频采样/环境噪声差异降噪→重采样→分割→特征提取Li
- NLP实践:pytorch 实现基于LSTM的预训练模型以及词性分类任务
某科学の憨憨
pytorchlstmpython语言模型神经网络自然语言处理分类
环境版本配置1:CUDA版本:Cudacompilationtools,release11.8,V11.8.89在cmd中用以下指令查看nvcc-V**2:cudnn版本:**8700importtorch#用这个查看print(torch.backends.cudnn.version())3:python版本:3.94:Pytorch版本:torch2.0.0+cu1185:nltk:3.8.1
- python和nltk自然语言处理 脚本之家_NLTK基础教程:用NLTK和Python库构建机器学习应用 完整版pdf...
weixin_39834084
脚本之家
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。目录第1章自然语言处理简介11.
- python和nltk自然语言处理 pdf_NLTK基础教程:用NLTK和Python库构建机器学习应用 完整版pdf...
weixin_39531374
pdf
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。第1章自然语言处理简介11.1为
- TF-IDF算法详解
听风Q
NLPtf-idf算法深度学习nlp机器学习
文章目录TF-IDF算法TF-IDF算法介绍TF=>词频(TermFrequency)IDF=>逆向文件频率(InverseDocumentFrequency)TF-IDF实际上是:TF*IDFpython3实现NLTK实现Sklearn实现jiaba实现TF-IDF算法缺点TF-IWF算法TF-IDF算法TF-IDF算法介绍TF-IDF(termfrequency–inversedocument
- 用python 的 sentiment intensity analyzer的情感分析器,将用户评论进行分类
max500600
python算法python分类人工智能
SentimentIntensityAnalyzer是nltk(NaturalLanguageToolkit)库中的一个工具,用于进行情感分析。它会为文本返回四个得分:负向情感得分(neg)、中性情感得分(neu)、正向情感得分(pos)和综合得分(compound)。综合得分范围在-1(极负面)到1(极正面)之间,通常可以根据这个得分对用户评论进行分类。以下是一个使用SentimentInten
- Python 自然语言处理实战: NLTK 与 spaCy,文本分析的左右护法
清水白石008
pythonPython题库python自然语言处理easyui
Python自然语言处理实战:NLTK与spaCy,文本分析的左右护法引言在信息爆炸的时代,文本数据以前所未有的速度增长,蕴藏着巨大的信息和价值。从社交媒体的评论,到浩如烟海的文档,文本数据无处不在,成为了解用户意图、挖掘商业情报、洞察社会趋势的关键来源。然而,文本数据本质上是非结构化的,计算机难以直接理解和处理。自然语言处理(NaturalLanguageProcessing,NLP)技术应运而
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- 使用NLTK,Natural Language Toolkit(Python自然语言工具包)对“PyMuPDF、Pillow和pytesseract实现PDF文件中文OCR识别”的改进
岳涛@泰山医院
Dashpythonpillowpdf
文章目录一、“PyMuPDF、Pillow和pytesseract实现PDF文件中文OCR识别”存在的问题及改进方向1.1存在问题1.2改进方向1.2.1使用PyMuPdf识别文字元素1.2.2使用NLTK对两次识别的结果进行相似度比对二、NLTK的安装2.1NLTK简介2.2pip安装2.3下载nltk_data2.4解压到C:/Users/Administrator/AppData/Roami
- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- 文本预处理时Resource punkt/stopwords/averaged_perceptron_tagger_eng/wordnet not found报错解决方式--亲测有效
無量空所
NLPnlp
报错如上图所示,此时在安装nltk包的情况下运行下方代码即可(缺哪个文件填哪个文件名)importnltkimportos#设置下载目录nltk.data.path.append('此处填写上述报错中给出的好几个红色目录中的一个')#下载stopwordsnltk.download('缺失文件名,这里填stopwords')
- python 命名实体识别_Python NLTK学习11(命名实体识别和关系抽取)
weixin_39630762
python命名实体识别
PythonNLTK学习11(命名实体识别和关系抽取)发表于:2017年7月27日阅读:18262除特别注明外,本站所有文章均为小杰Code原创本系列博客为学习《用Python进行自然语言处理》一书的学习笔记。命名实体识别命名实体识别(NER)系统的目标是识别所有文字提及的命名实体。可以分解成两个子任务:确定NE的边界和确定其类型。命名实体识别非常适用于基于分类器类型的方法来处理的任务。NLTK有
- python命名实体识别工具,斯坦福大学使用NLTK命名实体识别器(NER)功能
宇宙探索未解之迷
python命名实体识别工具
Isthispossible:toget(similarto)StanfordNamedEntityRecognizerfunctionalityusingjustNLTK?Isthereanyexample?Inparticular,IaminterestedinextractionLOCATIONpartoftext.Forexample,fromtextThemeetingwillbehel
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite