[LintCode]搜索二维矩阵 II

写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数。
这个矩阵具有以下特性:
每行中的整数从左到右是排序的。
每一列的整数从上到下是排序的。
在每一行或每一列中没有重复的整数。

样例
考虑下列矩阵:
[
[1, 3, 5, 7],
[2, 4, 7, 8],
[3, 5, 9, 10]
]
给出target = 3,返回 2

挑战
要求O(m+n) 时间复杂度和O(1) 额外空间

法一:
public int searchMatrix(int[][] matrix, int target) {
        if(null == matrix || matrix.length == 0 || matrix[0].length == 0) return 0;
        int i = 0;
        int j = matrix[0].length - 1;
        int count = 0;
        while(i < matrix.length && j >= 0) {
            if(matrix[i][j] == target) {
                count++;
                i++;
                j--;
            }else if(matrix[i][j] > target){
                j--;
            }else{
                i++;
            }
        }
        return count;
    }
法二:
public class Solution {
    /**
     * @param matrix: A list of lists of integers
     * @param: A number you want to search in the matrix
     * @return: An integer indicate the occurrence of target in the given matrix
     */
    public int searchMatrix(int[][] matrix, int target) {
        if(null == matrix || matrix.length == 0 || matrix[0].length == 0) return 0;
        int m = matrix.length;
        int n = matrix[0].length;
        int l = 0, h = m - 1;
        int line = -1;
        int count = 0;
        while(l <= h) {
            int mid = (l + h)/2;
            if(matrix[mid][0] == target) {
                line = mid - 1;
                count++;
                break;
            }else if(matrix[mid][0] > target) {
                h = mid - 1;
            }else {
                l = mid + 1;
            }
        }
        if(line == -1) line = l - 1;
        for(int i = 0; i <= line; i++) {
           l = 0;
           h = n - 1;
           while(l <= h) {
               int mid = (l + h)/2;
               if(matrix[i][mid] == target) {
                   count++;
                   break;
               }else if(matrix[i][mid] > target) {
                   h = mid - 1;
               }else {
                   l = mid + 1;
               }
           }
        }
        return count;
    }
}

你可能感兴趣的:(LintCode,java,matrix,二分查找)