事务
事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚;
1. 原子性(Atomicity)
事务被视为不可分割的最小单元,事务的所有操作要么全部提交成功,要么全部失败回滚;
回滚可以用日志来实现,日志记录着事务所执行的修改操作,在回滚时反向执行这些修改操作即可;
2. 一致性(Consistency)
数据库在事务执行前后都保持一致性状态;
在一致性状态下,所有事务对一个数据的读取结果都是相同的。
3. 隔离性(Isolation)
一个事务所做的修改在最终提交以前,对其它事务是不可见的;
4. 持久性(Durability)
一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失;
可以通过数据库备份和恢复来实现,在系统发生奔溃时,使用备份的数据库进行数据恢复;
--------------------------------
只有满足一致性,事务的执行结果才是正确的;
而一致性的前提是,原子性和隔离性;
持久性是为了应对数据库奔溃的情况;
在无并发的情况下,事务串行执行,隔离性一定能够满足;此时要只要能满足原子性,就一定能满足一致性;
在并发的情况下,多个事务并发执行,事务不仅要满足原子性,还需要满足隔离性,才能满足一致性;
MySQL 默认采用自动提交模式。也就是说,如果不显式使用START TRANSACTION语句来开始一个事务,那么每个查询都会被当做一个事务自动提交;
在并发环境下,事务的隔离性很难保证,因此会出现很多并发一致性问题;
产生并发一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题;
T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改;
T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据;
T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同;
T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同;
从结果来看,两者都是,一个线程在另外一个线程的前后两次读取的过程之间修改了数据,导致另外一个线程的前后两次读取的结果不一样;
但,如果从控制的角度来看的话,两者的区别就大了:对于不可重复读,你只需要锁住特定的某条记录(锁行)即可解决问题;而对于幻影读,你需要锁定特定的记录及其相近的记录(锁表);
更具体地说是,不可重复读重点在于update和delete,而幻影读的重点在于insert;
如果使用锁机制来实现这两种隔离级别,在可重复读中,该sql第一次读取到数据后,就将这些数据加锁,其它事务无法修改这些数据,就可以实现可重复读了;
但这种方法却无法锁住insert的数据,所以当事务A先前读取了数据,或者修改了全部数据,事务B还是可以insert数据提交,这时事务A就会发现莫名其妙多了一条之前没有的数据,这就是幻影读,不能通过行锁来避免;需要Serializable隔离级别 ,读用读锁,写用写锁,读锁和写锁互斥,这么做可以有效的避免幻读、不可重复读、脏读等问题,但会极大的降低数据库的并发能力;
所以说不可重复读和幻读最大的区别,就在于如何通过锁机制来解决他们产生的问题;
当然,上述说的都是用悲观锁来解决问题;
------------------------------------------------
悲观锁:正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处 于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机 制,也无法保证外部系统不会修改数据);
在悲观锁的情况下,为了保证事务的隔离性,就需要一致性锁定读。读取数据时给加锁,其它事务无法修改这些数据。修改删除数据时也要加锁,其它事务无法读取这些数据。
乐观锁:相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受;
而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如 果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据;
MySQL 中提供了两种封锁粒度:行级锁以及表级锁;应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高;
但是加锁需要消耗资源,锁的各种操作(包括获取锁、释放锁、以及检查锁状态)都会增加系统开销。因此封锁粒度越小,系统开销就越大;所以,在选择封锁粒度时,需要在锁开销和并发程度之间做一个权衡;
有以下两个规定:
锁的兼容关系如下:
- | X | S |
---|---|---|
X | NO | NO |
S | NO | YES |
使用意向锁(Intention Locks)可以更容易地支持多粒度封锁。
在存在行级锁和表级锁的情况下,事务 T 想要对表 A 加 X 锁,就需要先检测是否有其它事务对表 A 或者表 A 中的任意一行加了锁,那么就需要对表 A 的每一行都检测一次,这是非常耗时的。
意向锁在原来的 X/S 锁之上引入了 IX/IS,IX/IS 都是表锁,用来表示一个事务想要在表中的某个数据行上加 X 锁或 S 锁。有以下两个规定:
通过引入意向锁,事务 T 想要对表 A 加 X 锁,只需要先检测是否有其它事务对表 A 加了 X/IX/S/IS 锁,如果加了就表示有其它事务正在使用这个表或者表中某一行的锁,因此事务 T 加 X 锁失败。
各种锁的兼容关系如下:
- | X | IX | S | IS |
---|---|---|---|---|
X | NO | NO | NO | NO |
IX | NO | YES | NO | YES |
S | NO | NO | YES | YES |
IS | NO | YES | YES | YES |
解释如下:
一级封锁协议
事务 T 要修改数据 A 时必须加 X 锁,直到 T 结束才释放锁。
可以解决丢失修改问题,因为不能同时有两个事务对同一个数据进行修改,那么事务的修改就不会被覆盖。
T1 | T1 |
---|---|
lock-x(A) | |
read A=20 | |
lock-x(A) | |
wait | |
write A=19 | . |
commit | . |
unlock-x(A) | . |
obtain | |
read A=19 | |
write A=21 | |
commit | |
unlock-x(A) |
二级封锁协议
在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁。
可以解决读脏数据问题,因为如果一个事务在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么就不能再加 S 锁了,也就是不会读入数据。
T1 | T1 |
---|---|
lock-x(A) | |
read A=20 | |
write A=19 | |
lock-s(A) | |
wait | |
rollback | . |
A=20 | . |
unlock-x(A) | . |
obtain | |
read A=20 | |
commit | |
unlock-s(A) |
三级封锁协议
在二级的基础上,要求读取数据 A 时必须加 S 锁,直到事务结束了才能释放 S 锁。
可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在读的期间数据发生改变。
T1 | T1 |
---|---|
lock-s(A) | |
read A=20 | |
lock-x(A) | |
wait | |
read A=20 | . |
commit | . |
unlock-s(A) | . |
obtain | |
read A=20 | |
write A=19 | |
commit | |
unlock-X(A) |
加锁和解锁分为两个阶段进行。
可串行化调度是指,通过并发控制,使得并发执行的事务结果与某个串行执行的事务结果相同。
事务遵循两段锁协议是保证可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。
lock-x(A)...lock-s(B)...lock-s(C)...unlock(A)...unlock(C)...unlock(B)
但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度。
lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(C)...unlock(C)
MySQL 的 InnoDB 存储引擎采用两段锁协议,会根据隔离级别在需要的时候自动加锁,并且所有的锁都是在同一时刻被释放,这被称为隐式锁定。
InnoDB 也可以使用特定的语句进行显示锁定:
SELECT ... LOCK In SHARE MODE;
SELECT ... FOR UPDATE;
事务中的修改,即使没有提交,对其它事务也是可见的。
提交读(READ COMMITTED)
一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改在提交之前对其它事务是不可见的。
可重复读(REPEATABLE READ)
保证在同一个事务中多次读取同样数据的结果是一样的。
可串行化(SERIALIXABLE)
强制事务串行执行。
隔离级别 | 脏读 | 不可重复读 | 幻影读 |
---|---|---|---|
未提交读 | YES | YES | YES |
提交读 | NO | YES | YES |
可重复读 | NO | NO | YES |
可串行化 | NO | NO | NO |
InnoDB存储引擎用多版本并发控制(Multi-Version Concurrency Control, MVCC)来实现提交读和可重复读这两种隔离级别;
而未提交读隔离级别总是读取最新的数据行,无需使用MVCC即可实现;
可串行化隔离级别需要对所有读取的行都加锁,只使用MVCC无法实现;
InooDB 的 MVCC 在每行记录后面都保存着两个隐藏的列,用来存储两个版本号:
InnoDB 的 MVCC 使用到的快照存储在 Undo 日志中,该日志通过回滚指针把一个数据行(Record)的所有快照连接起来。
以下实现过程针对可重复读隔离级别。
1. SELECT
当开始新一个事务时,该事务的版本号肯定会大于当前所有数据行快照的创建版本号,理解这一点很关键。
多个事务必须读取到同一个数据行的快照,并且这个快照是距离现在最近的一个有效快照。但是也有例外,如果有一个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。
把没有对一个数据行做修改的事务称为 T,T 所要读取的数据行快照的创建版本号必须小于 T 的版本号,因为如果大于或者等于 T 的版本号,那么表示该数据行快照是其它事务的最新修改,因此不能去读取它。
除了上面的要求,T 所要读取的数据行快照的删除版本号必须大于 T 的版本号,因为如果小于等于 T 的版本号,那么表示该数据行快照是已经被删除的,不应该去读取它。
2. INSERT
将当前系统版本号作为数据行快照的创建版本号。
3. DELETE
将当前系统版本号作为数据行快照的删除版本号。
4. UPDATE
将当前系统版本号作为更新后的数据行快照的创建版本号,同时将当前系统版本号作为更新前的数据行快照的删除版本号。可以理解为先执行 DELETE 后执行 INSERT。
使用 MVCC 读取的是快照中的数据,这样可以减少加锁所带来的开销。
select * from table ...;
读取的是最新的数据,需要加锁。以下第一个语句需要加 S 锁,其它都需要加 X 锁。
select * from table where ? lock in share mode;
select * from table where ? for update;
insert;
update;
delete;
Next-Key Locks 也是 MySQL 的 InnoDB 存储引擎的一种锁实现。MVCC 不能解决幻读的问题,Next-Key Locks 就是为了解决这个问题而存在的。在可重复读(REPEATABLE READ)隔离级别下,使用 MVCC + Next-Key Locks 可以解决幻读问题。
锁定的对象是索引,而不是数据。如果表没有设置索引,InnoDB 会自动在主键上创建隐藏的聚集索引,因此 Record Locks 依然可以使用。
Grap Locks
锁定一个范围内的索引,例如当一个事务执行以下语句,其它事务就不能在 t.c 中插入 15。
SELECT c FROM t WHERE c BETWEEN 10 and 20 FOR UPDATE;
它是 Record Locks 和 Gap Locks 的结合。在 user 中有以下记录:
| id | last_name | first_name | age |
|------|-------------|--------------|-------|
| 4 | stark | tony | 21 |
| 1 | tom | hiddleston | 30 |
| 3 | morgan | freeman | 40 |
| 5 | jeff | dean | 50 |
| 2 | donald | trump | 80 |
+------|-------------|--------------|-------+
那么就需要锁定以下范围:
(-∞, 21]
(21, 30]
(30, 40]
(40, 50]
(50, 80]
(80, ∞)
记 A->B 表示 A 函数决定 B,也可以说 B 函数依赖于 A。
如果 {A1,A2,... ,An} 是关系的一个或多个属性的集合,该集合函数决定了关系的其它所有属性并且是最小的,那么该集合就称为键码。
对于 A->B,如果能找到 A 的真子集 A',使得 A'-> B,那么 A->B 就是部分函数依赖,否则就是完全函数依赖;
对于 A->B,B->C,则 A->C 是一个传递依赖。
以下的学生课程关系的函数依赖为 Sno, Cname -> Sname, Sdept, Mname, Grade,键码为 {Sno, Cname}。也就是说,确定学生和课程之后,就能确定其它信息。
Sno | Sname | Sdept | Mname | Cname | Grade |
---|---|---|---|---|---|
1 | 学生-1 | 学院-1 | 院长-1 | 课程-1 | 90 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-2 | 80 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-1 | 100 |
3 | 学生-3 | 学院-2 | 院长-2 | 课程-2 | 95 |
不符合范式的关系,会产生很多异常,主要有以下四种异常:
范式理论是为了解决以上提到四种异常。高级别范式的依赖于低级别的范式。
属性不可分;
2. 第二范式 (2NF)
每个非主属性完全函数依赖于键码。
可以通过分解来满足。
分解前
Sno | Sname | Sdept | Mname | Cname | Grade |
---|---|---|---|---|---|
1 | 学生-1 | 学院-1 | 院长-1 | 课程-1 | 90 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-2 | 80 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-1 | 100 |
3 | 学生-3 | 学院-2 | 院长-2 | 课程-2 | 95 |
以上学生课程关系中,{Sno, Cname} 为键码,有如下函数依赖:
Grade 完全函数依赖于键码,它没有任何冗余数据,每个学生的每门课都有特定的成绩。
Sname, Sdept 和 Mname 都部分依赖于键码,当一个学生选修了多门课时,这些数据就会出现多次,造成大量冗余数据。
分解后
关系-1
Sno | Sname | Sdept | Mname |
---|---|---|---|
1 | 学生-1 | 学院-1 | 院长-1 |
2 | 学生-2 | 学院-2 | 院长-2 |
3 | 学生-3 | 学院-2 | 院长-2 |
有以下函数依赖:
关系-2
Sno | Cname | Grade |
---|---|---|
1 | 课程-1 | 90 |
2 | 课程-2 | 80 |
2 | 课程-1 | 100 |
3 | 课程-2 | 95 |
有以下函数依赖:
非主属性不传递依赖于键码。
上面的 关系-1 中存在以下传递依赖:Sno -> Sdept -> Mname,可以进行以下分解:
关系-11
Sno | Sname | Sdept |
---|---|---|
1 | 学生-1 | 学院-1 |
2 | 学生-2 | 学院-2 |
3 | 学生-3 | 学院-2 |
关系-12
Sdept | Mname |
---|---|
学院-1 | 院长-1 |
学院-2 | 院长-2 |
Entity-Relationship,有三个组成部分:实体、属性、联系。
用来进行数据库系统的概念设计。
包含一对一,一对多,多对多三种。
如果 A 到 B 是一对多关系,那么画个带箭头的线段指向 B;如果是一对一,画两个带箭头的线段;如果是多对多,画两个不带箭头的线段。下图的 Course 和 Student 是一对多的关系。
一个实体在联系出现几次,就要用几条线连接。下图表示一个课程的先修关系,先修关系出现两个 Course 实体,第一个是先修课程,后一个是后修课程,因此需要用两条线来表示这种关系。
虽然老师可以开设多门课,并且可以教授多名学生,但是对于特定的学生和课程,只有一个老师教授,这就构成了一个三元联系。
一般只使用二元联系,可以把多元关系转换为二元关系。
用一个三角形和两条线来连接类和子类,与子类有关的属性和联系都连到子类上,而与父类和子类都有关的连到父类上。