LeetCode 120. Triangle 解题报告

120. Triangle

My Submissions
Question
Total Accepted: 62827  Total Submissions: 213725  Difficulty: Medium

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

Subscribe to see which companies asked this question

Show Tags
Have you met this question in a real interview? 
Yes
 
No

Discuss


    显然DP求解。Java的List不支持下标操作显然是Java的天生缺陷,写出来又长又难看,而且十分容易写错下标。

    我的AC代码

public class Triangle {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		List> dp = new ArrayList>();
		List l1 = new ArrayList();
		List l2 = new ArrayList();
		List l3 = new ArrayList();
		l1.add(-1);
		l2.add(2);
		l2.add(3);
		l3.add(1);
		l3.add(-1);
		l3.add(-3);
		dp.add(l1);
		dp.add(l2);
		dp.add(l3);
		System.out.print(minimumTotal(dp));
	}
	
	public static int minimumTotal(List> triangle) {
		if(triangle.size() == 0) return 0;
		List> dp = new ArrayList>();
		dp.add(triangle.get(0));
		for (int i = 1; i < triangle.size(); i++) {
			List dpl = new ArrayList();
			List list = triangle.get(i);
			List dpup = dp.get(i-1);
			dpl.add(list.get(0) + dpup.get(0));
			for (int j = 1; j < list.size() - 1; j++) {
				int a = dpup.get(j-1) ,b = dpup.get(j);
				int min = a > b ? b : a;
				dpl.add(list.get(j) + min);
			}
			dpl.add(list.get(list.size() - 1) + dpup.get(dpup.size() - 1));
			dp.add(dpl);
		}
		List last = dp.get(dp.size() - 1);
		int min = last.get(0);
		for (int i = 1; i < last.size(); i++) 
			if(last.get(i) < min) min = last.get(i);
		
		return min;
    }

}


你可能感兴趣的:(LeetCodeOJ,LeetCode,OJ,解题报告)