1799 二分答案

lyk最近在研究二分答案类的问题。
对于一个有n个互不相同的数且从小到大的正整数数列a(其中最大值不超过n),若要找一个在a中出现过的数字m,一个正确的二分程序是这样子的:
 
l=1; r=n; mid=(l+r)/2;
while (l<=r)
{
    if (a[mid]<=m) l=mid+1; else r=mid-1;
    mid=(l+r)/2;
}





最终a[r]一定等于m。
但是这个和谐的程序被熊孩子打乱了。
熊孩子在一开始就将a数组打乱顺序。(共有n!种可能)
lyk想知道最终r=k的期望。
由于小数点非常麻烦,所以你只需输出将答案乘以n!后对1000000007取模就可以了。

在样例中,共有2个数,被熊孩子打乱后的数列共有两种可能(1,2)或者(2,1),其中(1,2)经过上述操作后r=1,(2,1)经过上述操作后r=0。r=k的期望为0.5,0.5*2!=1,所以输出1。
Input
3个整数n,m,k(1<=m<=n<=10^9,0<=k<=n)。
Output
一行表示答案
Input示例
2 1 1
Output示例
1
#include 
using namespace std;
typedef long long ll;
const ll limit = 1e7;
const ll mod = 1e9+7;
ll FAC[] = {1, 682498929, 491101308, 76479948, 723816384, 67347853, 27368307, 625544428, 199888908, 888050723,        927880474, 281863274, 661224977, 623534362, 970055531, 261384175, 195888993, 66404266, 547665832, 109838563,      933245637, 724691727, 368925948, 268838846, 136026497, 112390913, 135498044, 217544623, 419363534, 500780548,     668123525, 128487469, 30977140, 522049725, 309058615, 386027524, 189239124, 148528617, 940567523, 917084264,      429277690, 996164327, 358655417, 568392357, 780072518, 462639908, 275105629, 909210595, 99199382, 703397904,      733333339, 97830135, 608823837, 256141983, 141827977, 696628828, 637939935, 811575797, 848924691, 131772368,      724464507, 272814771, 326159309, 456152084, 903466878, 92255682, 769795511, 373745190, 606241871, 825871994,      957939114, 435887178, 852304035, 663307737, 375297772, 217598709, 624148346, 671734977, 624500515, 748510389,     203191898, 423951674, 629786193, 672850561, 814362881, 823845496, 116667533, 256473217, 627655552,                245795606, 586445753, 172114298, 193781724, 778983779, 83868974, 315103615, 965785236, 492741665, 377329025,      847549272, 698611116};

ll fun(ll n)
{
    ll result = FAC[n/limit];
    for (ll i = n/limit*limit+1; i <= n; ++i)
    {
        result = result*i%mod;
    }
    return result;
}

int main()
{
    ll n, m, k;
    cin >> n >> m >> k;
    ll l = 1;
    ll r = n;
    ll mid = (l+r)/2;
    ll lcnt = 0,rcnt = 0;
    while (l <= r)
    {
        if (mid <= k)
        {
            l = mid+1;
            lcnt++;
        }
        else
        {
            r = mid-1;
            rcnt++;
        }
        mid = (l+r)/2;
    }
    
    ll res = 1;
    for (ll i = 0; i < rcnt; ++i)
    {
        res = res*(n-m-i)%mod;
    }
    for (ll i = 0; i < lcnt; ++i)
    {
        res = res*(m-i)%mod;
    }
    cout << res*fun(n-lcnt-rcnt)%mod <


你可能感兴趣的:(算法)