函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。
函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!
>>> f = abs
>>> f(-10)
10
>>> abs = 10
>>> abs(-10)
Traceback (most recent call last):
File "" , line 1, in <module>
TypeError: 'int' object is not callable
把abs指向10后,就无法通过abs(-10)调用该函数了!因为abs这个变量已经不指向求绝对值函数而是指向一个整数10!
当然实际代码绝对不能这么写,这里是为了说明函数名也是变量。要恢复abs函数,请重启Python交互环境。
注:由于abs函数实际上是定义在import builtins模块中的,所以要让修改abs变量的指向在其它模块也生效,要用import builtins; builtins.abs = 10。
def add(x,y,f):
return f(x)+f(y)
a=add(3,-5,abs)
print(a)
我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:
def f(x):
return x*x
r=map(f,list(range(1,10)))
print(r)
print(list(r))
<map object at 0x000001DF4002B1D0>
[1, 4, 9, 16, 25, 36, 49, 64, 81]
map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。
r=map(str,list(range(1,10)))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
from functools import reduce
def add(x,y):
return x+y
r=reduce(add,list(range(1,10,2)))
print(r)
25
当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:
def fn(x,y):
return x*10+y
print(reduce(fn,range(1,10,2)))
13579 range本身就是可迭代的
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return DIGITS[s]
return reduce(fn, map(char2num, s))
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4,
'5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def char2num(s):
return DIGITS[s]
def str2num(s):
return reduce(lambda x,y:x*10+y,map(char2num,s))
a=str2num('123')
print(a)
L1 = ['adam', 'LISA', 'barT']
L2 = list(map(normalize, L1))
print(L2)
def prod(L):
return reduce(lambda x,y:x*y,L)
print('3 * 5 * 7 * 9 =', prod([3, 5, 7, 9]))
if prod([3, 5, 7, 9]) == 945:
print('测试成功!')
else:
print('测试失败!')
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']
可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
用它能直接把iterator中不想要的给筛掉这个功能
关键是要定义好筛选函数
def _odd_iter():
n=1
while True:
n=n+2
yield n
def _not_divisible(n):
return lambda x:x%n>0
def primes():
yield 2
it=_odd_iter()
while True:
n=next(it)
yield n
#print('the divider is ',n) 因为素数从一开始就不存在,所以不需要2去筛
it=filter(_not_divisible(n),it) #构造新序列
for n in primes():
if n<1000:
print(n)
else:
break
def is_palindrome(n):
L=[]
while n:
L.append(n%10)
n=int(n/10)
i=0
j=len(L)-1
while i<=j:
if L[i]!=L[j]:
return False
i=i+1
j=j-1
return True
print(is_palindrome(153))
print(is_palindrome(1551))
output = filter(is_palindrome, range(1, 1000))
print('1~1000:', list(output))
if list(filter(is_palindrome, range(1, 200))) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191]:
print('测试成功!')
else:
print('测试失败!')
一些别人的值得借鉴的
def is_palindrome(n):
return str(n)==str(n)[::-1]
str(n)将n转成字符串,[::]是正序排列,[::-1]是反向排列。
def is_palindrome(n):
L=list([i for i in str(n)])
a=list([i for i in str(n)])
L.reverse()
return a==L
排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:
list = [36, 5, -12, 9, -21]
keys = [36, 5, 12, 9, 21]
然后sorted()函数按照keys进行排序,并按照对应关系返回list相应的元素:
keys排序结果 => [5, 9, 12, 21, 36]
| | | | |
最终结果 => [5, 9, -12, -21, 36]
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于’Z’ < ‘a’,结果,大写字母Z会排在小写字母a的前面。
sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']
现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
def by_name(t):
return t[0]
L2 = sorted(L, key=by_name)
print(L2)
def by_score(t):
return t[1]
L2 = sorted(L, key=by_score,reverse=True)
print(L2)
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:
如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>
调用函数f时,才真正计算求和的结果:
>>> f()
25
在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
f1()和f2()的调用结果互不影响。
意思是函数名不一样了,对象不一样了,功能还是一样的
注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count() # 传回来了三个f函数,都返回后执行f() return i*i 此时i是3
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果是:
>>> f1()
9
>>> f2()
9
>>> f3()
9
全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs=[]
for i in range(1,4):
fs.append(f(i)) #
# f返回的是g函数(需要返回的都返回完了),f(i)立刻被g函数执行,因此i的当前值被传入f(),然后这个值才被加在外面
return fs
f1,f2,f3=count()
print(f1())
print(f2())
print(f3())
练习不会做:
利用闭包返回一个计数器函数,每次调用它返回递增整数:
list作为全局变量是不需要声明的
def createCounter():
s = [0]
def counter():
s[0] = s[0] + 1
return s[0]
return counter
def createCounter():
s = 0
def counter():
nonlocal s
s = s + 1
return s
return counter
关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25
同样,也可以把匿名函数作为返回值返回,比如:
def build(x, y):
return lambda: x * x + y * y
def is_odd(n):
return n % 2 == 1
L = list(filter(is_odd, range(1, 20)))
L=list(filter(lambda x: x%2==1 ,range(1,20)))
print(L)
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
def now():
print('2015-3-25')
f=now
f()
print(f.__name__)
假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
当解释器读到@这样的修饰符的时候会优先解除@后的内容,直接就把@的下一行的函数或者类作为@后边函数的参数,然后将返回值赋给下一个修饰的函数对象。
python中@的用法
###示例代码
def function_1(A):
print("function_1")
def function_2(B): #注意fun2的参数是函数
print(B(3))
print("function_2")
@function_1
@function_2 #把fun_name作为参数传了进去,先执行fun_name(3),然后执行printfun2,把fun2传给fun1?
def function_name(n):
print("Hello World ,i am function_name")
return n+5
...
...
#python会按照自上而下的顺序把各自的函数结果作为下一个函数的输入。
#输出结果:
调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:
"""
hello world ,i am function_name
8
function_2
function_1
"""
@log
def now():
print('2015-3-25')
f=now
f()
print(f.__name__) #f.__name__=wrapper
call now()
2015-3-25
wrapper
把@log放到now()函数的定义处,相当于执行了语句:
now = log(now)
由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
这个3层嵌套的decorator用法如下:
@log('execute')
def now():
print('2015-3-25')
执行结果如下:
>>> now()
execute now():
2015-3-25
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
我们来剖析上面的语句,首先执行log(‘execute’),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。
以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的’now’变成了’wrapper’:
>>> now.__name__
'wrapper'
因为返回的那个wrapper()函数名字就是’wrapper’,所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.name = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
或者针对带参数的decorator:
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。
def metric(fn):
def wrapper(*args,**kw):
start_time=time.time()
k = fn(*args, **kw)
end_time=time.time()
print('%s executed in %s ms' % (fn.__name__, end_time-start_time))
return k #return才有最终的结果
return wrapper
@metric
def fast(x, y):
time.sleep(0.0012)
return x + y;
@metric
def slow(x, y, z):
time.sleep(0.1234)
return x * y * z;
f = fast(11, 22)
s = slow(11, 22, 33)
if f != 33:
print('测试失败!')
elif s != 7986:
print('测试失败!')
理解Python装饰器(Decorator)
在计算机科学中,闭包(英语:Closure),又称词法闭包(Lexical Closure)或函数闭包(function closures),是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外。
讲得挺清晰的
装饰器
带参数的还是晕乎乎
class Data_test2(object):
day=0
month=0
year=0
def __init__(self,year=0,month=0,day=0):
self.day=day
self.month=month
self.year=year
@classmethod
def get_date(cls,data_as_string):
#这里第一个参数是cls, 表示调用当前的类名
year,month,day=map(int,string_date.split('-'))
date1=cls(year,month,day)
#返回的是一个初始化后的类
return date1
def out_date(self):
print "year :"
print self.year
print "month :"
print self.month
print "day :"
print self.day
r=Data_test2.get_date("2016-8-6")
r.out_date()
这样子等于先调用get_date()对字符串进行处理,然后才使用Data_test的构造函数初始化。
class DemoClass:
@classmethod
def classPrint(self):
print("class method")
def objPrint(self):
print("obj method")
obj = DemoClass()
obj.objPrint()
obj.classPrint()
DemoClass.classPrint()
DemoClass.objPrint() #TypeError: objPrint() missing 1 required positional argument: 'self'
Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。
在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:
int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:
>>> int('12345')
12345
但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:
>>> int('12345', base=8) 12345按照8进制解读的十进制值是5349
5349
>>> int('12345', 16)
74565
假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:
def int2(x, base=2):
return int(x, base)
>>> int2('1000000')
64
>>> int2('1010101')
85
functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85
所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:
>>> int2('1000000', base=10)
1000000
最后,创建偏函数时,实际上可以接收函数对象、*args和kw这3个参数,**当传入:
int2 = functools.partial(int, base=2)
实际上固定了int()函数的关键字参数base,也就是:
int2('10010')
相当于:
kw = { 'base': 2 }
int('10010', **kw)
当传入:
max2 = functools.partial(max, 10)
实际上会把10作为*args的一部分自动加到左边,也就是:
max2(5, 6, 7)
相当于:
args = (10, 5, 6, 7)
max(*args)
结果为10。