转自: https://www.kidscoding8.com/19110.html
德国大数学家莱布尼茨Leibniz在研究圆周率π的过程中发现一个数学公式是这样的:
π/4 = 1 - 1/3 + 1/5 - 1/7 + …
我们可以通过这个数学公式求得π的值,用程序检验一下它的计算准确度如何? 暂定参与计算的最后一项数值要小于10-6
【分析】
我们观察一下这个公式,发现分母都是奇数,第一项是1,可理解成1/1, 而且偶数项都是负数,奇数项都是正的,通过这个观察我们就可以使用Python语言求出π的值。再对照高精度的π值,我们就可以知道它的精确度了。
【运行结果】
酷叮猫少儿编程讲堂——Python 用莱布尼茨等式求
【代码】
from math import pi
fm = (i for i in range(1,int(1e6+2)) if i%2) # 找到所有可以参与计算的奇数分母
pidiv4 = 0
for id, a in enumerate(fm,start=1): # 莱布尼茨公式求 π/4
pidiv4 += (1/a) if id%2 else (-1/a)
myPi = pidiv4*4 # 求出 π
print(pi, myPi)
print(" ")
count=False
prec=0
for a,b in zip(str(myPi), str(pi)):
if ab’.’:
count = True
if count:
if a==b:
prec+=1
else:
break
print(“π 的计算精度精确到小数点后 {} 位”.format(prec-1))
能近似求解圆周率的数学公式还很多,大家可以到网上再找一些,看看它们的计算精度如何.