Hadoop之MapReduce程序的3种集群提交运行模式详解

1.MapReduce程序的集群运行模式1

MapReduce程序的集群运行模式1—将工程打成jar包,上传到服务器,然后用hadoop命令hadoop jar xxx.jar 将jar包分发到集群中运行。

wordcount代码:

package MapReduce;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;


public class WordCount
{
     public static String path1 = "hdfs://hadoop20:9000/word.txt";//读取HDFS中的数据
     public static String path2 = "hdfs://hadoop20:9000/dir1/";//数据输出到HDFS中
     public static void main(String[] args) throws Exception
     {
         Configuration conf = new Configuration();
         FileSystem fileSystem = FileSystem.get(conf);

         if(fileSystem.exists(new Path(path2)))
         {
             fileSystem.delete(new Path(path2), true);
         }

         Job job = Job.getInstance(conf,"wordcount");

         job.setJarByClass(WordCount.class);

         FileInputFormat.setInputPaths(job, new Path(path1));
         job.setInputFormatClass(TextInputFormat.class);
         job.setMapperClass(MyMapper.class);
         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(LongWritable.class);

         job.setNumReduceTasks(1);
         job.setPartitionerClass(HashPartitioner.class);


         job.setReducerClass(MyReducer.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(LongWritable.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         FileOutputFormat.setOutputPath(job, new Path(path2));
         job.waitForCompletion(true);
     }    
     public  static  class MyMapper extends Mapper
     {
             protected void map(LongWritable k1, Text v1,Context context)throws IOException, InterruptedException
            {
                 String[] splited = v1.toString().split("\t");
                 for (String string : splited)
                {
                       context.write(new Text(string),new LongWritable(1L));
                }
            }     
     }
     public  static class MyReducer extends Reducer
     {
        protected void reduce(Text k2, Iterable v2s,Context context)throws IOException, InterruptedException
        {
                 long sum = 0L;
                 for (LongWritable v2 : v2s)
                {
                    sum += v2.get();
                }
                context.write(k2,new LongWritable(sum));
        }
     }
}

打成jar包后在集群中运行:

[root@hadoop20 local]# hadoop jar wordcount.jar

查看运行结果:

[root@hadoop20 local]# hadoop fs -cat /dir/part-r-00000
hello   2
me      1
you     1


2. MapReduce程序的集群运行模式2

MapReduce程序的集群运行模式2—在linux的eclipse中直接运行main方法,进而将程序提交到集群中去运行,但是必须采取以下措施: 

①在工程src目录下加入 mapred-site.xml 和 yarn-site.xml 这两个配置文件或者在代码中加入:
  Configuration conf = new Configuration();
  conf.set("mapreduce.framework.name", "yarn");
  conf.set("yarn.resourcemanager.hostname", "hadoop20");

② 同时将工程打成jar包(xxx.jar),并在main方法中添加一个conf的配置参数 conf.set(“mapreduce.job.jar”,”路径/xxx.jar”); 
还是以WordCount程序为例: 
先导出个jar包: 
Hadoop之MapReduce程序的3种集群提交运行模式详解_第1张图片 
Hadoop之MapReduce程序的3种集群提交运行模式详解_第2张图片 
查看jar包:

[root@hadoop20 local]# ll
total 415748
drwxrwxr-x.  8 root  root       4096 Jul  5 01:22 eclipse
-rw-r--r--.  1 root  root  262311443 Jul  3 06:26 eclipse-committers-neon-R-linux-gtk.tar.gz
drwxr-xr-x. 11 67974 users      4096 Jul  1 01:47 hadoop
-rw-r--r--.  1 root  root       3620 Jul  2 05:55 hadoop-env.cmd
drwxr-xr-x.  8 uucp    143      4096 Jun 16  2014 jdk
-rw-r--r--.  1 root  root  159958812 Jul  3 19:17 jdk-8u11-linux-i586.tar.gz
-rw-r--r--.  1 root  root    3400818 Apr  7 05:28 Skin_NonSkin.txt
-rw-r--r--.  1 root  root       6573 Jul  5 01:33 wc.jar
-rw-r--r--.  1 root  root       5230 Jul  5 05:31 wordcount2.jar  //这是导出的jar包wordcount2.jar
-rw-r--r--.  1 root  root       5106 Jul  5 04:56 wordcount.jar
-rw-r--r--.  1 root  root         19 Jun 24 00:15 word.txt
[root@hadoop20 local]# pwd
/usr/local

接下来在linux的eclipse代码中添加配置文件:

 package MapReduce;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;


public class WordCount
{
     public static String path1 = "hdfs://hadoop20:9000/word.txt";//读取HDFS中的数据
     public static String path2 = "hdfs://hadoop20:9000/dir2/";//数据输出到HDFS中
     public static void main(String[] args) throws Exception
     {
         Configuration conf = new Configuration();
         conf.set("mapreduce.job.jar","/usr/local/wordcount2.jar");  //change
         conf.set("fs.defaultFS", "hdfs://hadoop20:9000/");          //change
         conf.set("mapreduce.framework.name", "yarn");               //change
         conf.set("yarn.resourcemanager.hostname", "hadoop20");      //change
         FileSystem fileSystem = FileSystem.get(conf);

         if(fileSystem.exists(new Path(path2)))
         {
             fileSystem.delete(new Path(path2), true);
         }

         Job job = Job.getInstance(conf,"wordcount");

         job.setJarByClass(WordCount.class);

         FileInputFormat.setInputPaths(job, new Path(path1));
         job.setInputFormatClass(TextInputFormat.class);
         job.setMapperClass(MyMapper.class);
         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(LongWritable.class);

         job.setNumReduceTasks(1);
         job.setPartitionerClass(HashPartitioner.class);


         job.setReducerClass(MyReducer.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(LongWritable.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         FileOutputFormat.setOutputPath(job, new Path(path2));
         job.waitForCompletion(true);
     }    
     public  static  class MyMapper extends Mapper
     {
             protected void map(LongWritable k1, Text v1,Context context)throws IOException, InterruptedException
            {
                 String[] splited = v1.toString().split("\t");
                 for (String string : splited)
                {
                       context.write(new Text(string),new LongWritable(1L));
                }
            }     
     }
     public  static class MyReducer extends Reducer
     {
        protected void reduce(Text k2, Iterable v2s,Context context)throws IOException, InterruptedException
        {
                 long sum = 0L;
                 for (LongWritable v2 : v2s)
                {
                    sum += v2.get();
                }
                context.write(k2,new LongWritable(sum));
        }
     }
}

接下来我们通过shell命令查看运行结果:

[root@hadoop20 local]# hadoop fs -cat /dir2/part-r-00000
hello   2
me      1
you     1


3. MapReduce程序的集群运行模式3

MapReduce程序的集群运行模式3—在windows的eclipse中直接运行main方法,进而将程序提交给集群运行,但是因为平台不兼容,需要做很多的设置修改: 

 ①要在windows中存放一份hadoop的安装包(解压好的)  

 ②要将其中的lib和bin目录替换成根据你的windows版本重新编译出的文件(lib和bin都是和本地平台相关的东西)

 ③再要配置系统环境变量 HADOOP_HOME 和 PATH

 ④修改YarnRunner这个类的源码


4. MR程序的几种提交运行模式的具体指令


本地模型运行

1/在windows的eclipse里面直接运行main方法,就会将job提交给本地执行器localjobrunner执行
      ----输入输出数据可以放在本地路径下(c:/wc/srcdata/)
      ----输入输出数据也可以放在hdfs中(hdfs://weekend110:9000/wc/srcdata)
      
      
2/在linux的eclipse里面直接运行main方法,但是不要添加yarn相关的配置,也会提交给localjobrunner执行
      ----输入输出数据可以放在本地路径下(/home/hadoop/wc/srcdata/)
      ----输入输出数据也可以放在hdfs中(hdfs://weekend110:9000/wc/srcdata)  
      
           
集群模式运行
1/将工程打成jar包,上传到服务器,然后用hadoop命令提交  hadoop jar wc.jar cn.itcast.hadoop.mr.wordcount.WCRunner
2/在linux的eclipse中直接运行main方法,也可以提交到集群中去运行,但是,必须采取以下措施:
      ----在工程src目录下加入 mapred-site.xml  和  yarn-site.xml 
      ----将工程打成jar包(wc.jar),同时在main方法中添加一个conf的配置参数 conf.set("mapreduce.job.jar","wc.jar");           


3/在windows的eclipse中直接运行main方法,也可以提交给集群中运行,但是因为平台不兼容,需要做很多的设置修改
----要在windows中存放一份hadoop的安装包(解压好的)
----要将其中的lib和bin目录替换成根据你的windows版本重新编译出的文件
----再要配置系统环境变量 HADOOP_HOME  和 PATH
----修改YarnRunner这个类的源码

你可能感兴趣的:(Hadoop)