- 数据结构与算法-09贪心算法&动态规划
阿诚学java
数据结构与算法学习记录贪心算法动态规划ios
贪心算法&动态规划1贪心算法介绍贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法通常用于解决优化问题,如最小化成本、最大化收益等。然而,贪心算法并不总是能够得到全局最优解,但它具有直观、高效、易于实现等优点,因此在许多实际问题中得到了广泛应用。基本思想贪心算法总是从问题的某一个初始解出发。
- Agent架构与工作原理:理解智能体的核心机制
hdzw20
agent学习ai机器学习agent智能体
Agent架构与工作原理:深入理解智能体的核心机制AIAgent的核心组成部分一个完整的AIAgent通常由以下几个核心模块组成:1.规划模块(PlanningModule)规划模块是Agent的"大脑",负责制定行动策略。它接收目标任务,分析当前状态,并制定一系列行动计划。规划可以是:短期规划:针对当前步骤的即时决策长期规划:面向整体目标的战略性规划动态规划:根据执行结果实时调整计划2.记忆模块
- 算法工程师必备:数据结构10大经典算法详解
数据结构与算法学习
数据结构与算法宝典算法数据结构ai
算法工程师必备:数据结构10大经典算法详解关键词:数据结构、经典算法、时间复杂度、应用场景、代码实现摘要:本文是算法工程师的“算法工具箱”指南,系统讲解数据结构领域最核心的10大经典算法(快速排序、归并排序、二分查找、深度优先搜索DFS、广度优先搜索BFS、动态规划、贪心算法、KMP字符串匹配、哈希算法、并查集)。通过生活案例、代码示例、复杂度分析和实战场景,帮你彻底掌握这些算法的原理与应用,真正
- C# 实现:动态规划解决 0/1 背包问题
江沉晚呤时
C#算法代理模式.netcorec#microsoft.net.netcore算法
在生活中,我们经常面临选择和优化的问题。例如:在有限的资源(如时间、金钱、空间等)下,如何选择最有价值的物品?背包问题(KnapsackProblem)就是一种经典的优化问题,广泛应用于项目选择、投资决策、行李打包等领域。今天,我们将深入探讨0/1背包问题,并通过动态规划方法给出一种高效的解决方案。0/1背包问题0/1背包问题的基本描述是:给定一个容量为C的背包。有n个物品,每个物品有一个重量w[
- 动态规划入门(LIS模板)
动态规划是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法能用动态规划解决的问题,需要满足三个条件:最优子结构,无后效性和子问题重叠目录最长上升子序列(LIS)基本思路最长上升子序列贪心优化(二分优化)合唱队形参加算法竞赛!最长上升子序列(LIS)基本思路在做这种类型的题目时我们需要注意明确题目要求的状态一般来说题目问什么,我们的dp[]数组就可以用来表示什么状态之间的转移变换当下状
- 章节十四:乱序中的“指挥家”:堆排序奥义 - (堆排序 / Heap Sort)
杨小扩
常用算法详解算法
各位老铁,阿扩又来啦!前面我们聊了各种数据结构和算法,从基础的排序查找,到复杂的图算法、动态规划,再到巧妙的Trie树和布隆过滤器。今天,我们要再次回到排序算法的舞台,但这次的主角,可不是简单的“冒泡”或“选择”,而是一位在乱序中能高效组织、精准定位的“指挥家”——堆排序(HeapSort)!你可能听说过快速排序、归并排序,它们都是O(NlogN)级别的排序算法。堆排序也同样拥有这个优秀的性能,而
- LeetCode 72. 编辑距离(Edit Distance)| 动态规划详解
72.编辑距离题目描述给你两个单词word1和word2,请计算将word1转换为word2所需的最少操作数。你可以对一个单词进行以下三种操作:插入一个字符删除一个字符替换一个字符✅示例输入:word1="horse",word2="ros"输出:3解释:horse->rorse(替换h为r)rorse->rose(删除r)rose->ros(删除e)解题思路:动态规划(DP)✅状态定义dp[i]
- c语言找出递增子数组的长度,C语言实现最长递增子序列问题的解决方法
梁肖松
c语言找出递增子数组的长度
本文实例展示了C语言实现最长递增子序列问题的解决方法。分享给大家供大家参考。具体方法如下:问题描述:给定一个序列,找出其最长递增子序列长度。比如输入1375输出3算法解决思路:利用动态规划的思想,以序列的每个点最为最右端,找出每个点作为最右端时的子序列长度的最大值,即问题的求解。因此,在计算前面的每个点的时候,将其结果保存下来,后面的点与前面的点的数值进行比较,如果大,则在其长度基础上加1,并且找
- LeetCode第337题_打家劫舍III
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习
LeetCode第337题:打家劫舍III文章摘要本文详细解析LeetCode第337题"打家劫舍III",这是一道中等难度的二叉树动态规划问题。文章提供了基于深度优先搜索和动态规划的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升二叉树和动态规划能力的程序员。核心知识点:二叉树、动态规划、深度优先搜索难度等级:中等推荐人群:具有基础数据结构知识,想要提
- LeetCode(Java)
发现了中文版的leetCode,网址在https://leetcode-cn.com70.爬楼梯题目地址:https://leetcode-cn.com/problems/climbing-stairs/submissions/解题思路:最简单的动态规划题目,状态方程与斐波那契数列相同。publicintclimbStairs(intn){if(ntarget){r--;}else{l++;}}r
- 算法:动态规划 洛谷 P8776 [蓝桥杯 2022 省 A] 最长不下降子序列
健仙
算法动态规划蓝桥杯
思路:首先,这题你得先会(nlogn)复杂度的求最长不下降子序列方法。我们可以直接让k个数从下标为1开始,滑动到末端,这k个数就不用看它,因为我们把他设置成k个数后面的数,所以答案先加上k,然后我们看预处理每一个数从他开始(包括这个数)后面的最长不下降子序列,把长度放入b数组中,这样我们答案就是k加上b【k+1】,然后我们看k前面的数,k前面的数不是让答案加上前面的最长不下降子序列,因为此时我们有
- 算法竞赛备赛——【图论】求最短路径——Floyd算法
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
floyd算法基于动态规划应用:求多源最短路时间复杂度:n^3dijkstra:不能解决负边权floyd:能解决负边权不能解决负边权回路问题求最短路径:dijkstrabfsfloyd思路1.让任意两点之间的距离变短:引入中转点k通过k来中转i---->k---->jj2.找状态:n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x最终状态:dp[n][i][j]=x;中间状态:dp[k]
- 爬楼梯——动态规划
不吃鱼的猫
算法动态规划算法leetcode
文章目录题目一解法一:动态规划题目二解法:题目一假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?解法一:动态规划将dp[i]数组定义为到达第i阶楼梯有多少种方法,由每次可以爬1或2阶可以得到递推公式:dp[i]=dp[i−1]+dp[i−2]dp[i]=dp[i-1]+dp[i-2]dp[i]=dp[i−1]+dp[i−2]其中,dp[i-1
- 动态规划之爬楼梯
LeetCode地址:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定n是一个正整数。示例1:输入:2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:3输出:3解释:有三种方法可以爬到楼顶。-1阶+1阶+1阶-1阶+2阶-2阶+1阶第一种方法动态规划1.确定dp数组dp[i]爬到第i层楼梯,有dp[i
- 力扣第70题:爬楼梯 动态规划DP入门(C++)
Daking-
leetCode耐刷王leetcode动态规划算法c++
假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶思路什么叫动态规划?我们分割原始问题为多个子问题,在遍历数据的过程中,如果能根据之前得到的信息动态解决当前的子
- Java数据结构与算法(爬楼梯动态规划)
盘门
java数据结构与算法实战java动态规划开发语言
前言爬楼梯就是一个斐波那契数列问题,采用动态规划是最合适不过的。实现原理初始化:dp[0]=1;dp[1]=2;转移方程:dp[i]=dp[i-1]+d[i-2];边界条件:无具体代码实现classSolution{publicintclimbStairs(intn){if(n==1){return1;}int[]dp=newint[n];dp[0]=1;dp[1]=2;for(inti=2;i<
- 爬楼梯(动态规划)
AWEN_33
算法
假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶c初解(动态规划):classSolution{public:intclimbStairs(intn){//处
- 经典动态规划
最长上升子序列](https://www.luogu.com.cn/problem/B3637)题目描述这是一个简单的动规板子题。给出一个由n(n≤5000)n(n≤5000)n(n≤5000)个不超过10610^6106的正整数组成的序列。请输出这个序列的最长上升子序列的长度。最长上升子序列是指,从原序列中按顺序取出一些数字排在一起,这些数字是逐渐增大的。输入格式第一行,一个整数n,表示序列长度
- 【动态规划】 线性DP1——经典回顾
【动态规划】系列文章线性DP1.【动态规划】线性DP1——经典回顾2.【动态规划】线性DP2——进阶1【动态规划】线性DP1——经典回顾【动态规划】新的开始经典DP回顾最长递增子序列(LIS)题目链接题目分析DP代码O(n2)O(n^2)O(n2)补充算法O(nlogn)O(nlogn)O(nlogn)最长公共子序列(LCS)题目链接题目分析代码数字三角形题目链接题目分析自上而下代码自下而上代码新
- 区间DP 石子合并 C++
小超超爱学习9937
c++开发语言算法数据结构学习
区间DP是一种动态规划的方法,用于解决涉及区间的问题。它通常应用于需要确定区间的最优解或最值的情况下。石子合并问题是一个经典的区间DP问题,可以用区间DP方法解决。给定一行n个石子,每个石子有一个价值,现要将石子合并成若干堆,每次只能选择相邻的两堆进行合并,合并的得分为两堆石子的总价值,合并后的新堆的价值为得分。求合并到最后,最终得到的堆的最大价值。要求解石子合并问题,可以定义一个dp数组,dp[
- 五大编程竞赛平台终极对比
2401_86601498
c++
LeetCodeLeetCode是一个流行的在线编程平台,提供大量算法和数据结构题目。题目分为简单、中等和困难三个难度级别。LeetCode的题目涵盖各种主题,包括数组、字符串、树、动态规划等。LeetCode支持多种编程语言,包括C++,并提供在线代码编辑器和即时反馈。LeetCode还提供竞赛和面试模拟功能,适合准备技术面试的用户。CodeforcesCodeforces是一个以竞赛为主的在线
- 代码随想录算法训练营总结篇
m0_74934708
算法
第一次接触卡哥的课程是在大二上,当时做N皇后的题目看到卡哥的视频觉得大受裨益,就想着有时间能够刷完卡哥录制的整期课程,后面有算法训练营的监督让我很幸运地坚持了六十天,学到了很多东西,像贪心算法、动态规划、单调栈以及在二叉树里使用BFS和DFS,都是一些很美妙的思路。这次一刷leetcode后面要去学学前端了,等到暑假有时间希望可以跟着卡哥二刷leetcode。学会算法后再去做题有些痛苦,但做出来的
- Leetcode3202. 找出有效子序列的最大长度 II
EverydayaLeetcode题目来源:3202.找出有效子序列的最大长度II解法1:动态规划本题是选与不选的子序列问题,可以尝试给出这样的状态定义:dp[i][j]:以nums[i]结尾模k后值为j的最长子序列的长度。那么状态转移方程是怎样的呢?对于每一个i,遍历j(0&nums,intk){intn=nums.size();//dp[i][j]:以nums[i]结尾模k后值为j的最长子序列
- 【华为机试】HJ61 放苹果
不爱熬夜的Coder
算法华为机试golang华为golang算法面试
文章目录HJ61放苹果描述输入描述输出描述示例1示例2解题思路算法分析问题本质分析状态定义与转移递推关系详解动态规划表构建算法流程图示例推导过程代码实现思路时间复杂度分析关键优化点边界情况处理递归解法对比实际应用场景测试用例分析算法特点数学原理完整题解代码HJ61放苹果描述我们需要将m个相同的苹果放入n个相同的盘子中,允许有的盘子空着不放。求解有多少种不同的分法。输入描述输入两个整数m,n(0B[
- 2025B卷 - 华为OD机试七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、数组第3天、双指针第4天、贪心算法第5天、字符串处理第6天、深度优先搜索DFS第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSo
- 华为OD机试专栏--1.3 算法基础:1.3.3 动态规划入门
xiaoheshang_123
华为OD机试真题题库解析华为od面试职场和发展算法
目录1.3算法基础1.3.3动态规划入门一、动态规划的核心思想1.1什么是动态规划?1.2动态规划的特点二、动态规划的基本步骤三、经典动态规划问题3.1斐波那契数列(FibonacciSequence)问题描述动态规划解法代码实现(Python)3.2背包问题(KnapsackProblem)问题描述动态规划解法代码实现(Python)3.3最长公共子序列(LongestCommonSubsequ
- 前端面试专栏-算法篇:20. 贪心算法与动态规划入门
欢迎来到前端面试通关指南专栏!从js精讲到框架到实战,渐进系统化学习,坚持解锁新技能,祝你轻松拿下心仪offer。前端面试通关指南专栏主页前端面试专栏规划详情贪心算法与动态规划入门在计算机科学领域,算法是解决问题的核心工具。而贪心算法与动态规划作为两种重要的算法设计策略,广泛应用于优化问题中。本文将深入浅出地介绍这两种算法的基本概念、适用场景、实现方法,并通过经典案例帮助读者理解和掌握它们的核心思
- LeetCode题解---<接雨水>
文章目录题目法一:动态规划关于动态规划完整代码简单易理解版:官方代码:题目给定n个非负整数表示每个宽度为1的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。输入:height=[0,1,0,2,1,0,1,3,2,1,2,1]输出:6解释:上面是由数组[0,1,0,2,1,0,1,3,2,1,2,1]表示的高度图,在这种情况下,可以接6个单位的雨水(蓝色部分表示雨水)。示例2:输入:hei
- 算法设计与分析:分治、动态规划与贪心算法的异同与选择
vortex5
算法动态规划贪心算法
在计算机科学中,算法是解决问题的核心。面对复杂问题,算法设计师常常需要将其分解为更小、更易管理的子问题。分治法、动态规划和贪心算法都是基于“原问题”和“子问题”概念的强大策略,但它们在处理子问题的方式、相互关系以及最终解决方案的保证上存在本质区别。理解这些差异对于选择最适合特定问题的算法至关重要。✅一、共同点:都涉及“原问题→子问题”这三种算法范式都遵循将复杂问题分解为更简单部分的思想,这是许多高
- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,