faceswap模型训练过程准备——提取人脸

我使用录屏工具获得视频,并命名为.mp4格式
提取帧
ffmpeg -i /Users/hehui/Documents/video.mp4 /Users/hehui/faceswap/src/cage/video-frame-%d.png

从照片中提取人脸:

#-*-coding:utf8-*-
import os
import cv2
import time
import shutil
 
def getAllPath(dirpath, *suffix):
    PathArray = []
    for r, ds, fs in os.walk(dirpath):
        for fn in fs:
            if os.path.splitext(fn)[1] in suffix:
                fname = os.path.join(r, fn)
                PathArray.append(fname)
    return PathArray
 
def readPicSaveFace_1(sourcePath,targetPath,invalidPath,*suffix):
    try:
        ImagePaths=getAllPath(sourcePath, *suffix)
 
        #对list中图片逐一进行检查,找出其中的人脸然后写到目标文件夹下
        count = 1
        # haarcascade_frontalface_alt.xml为库训练好的分类器文件,下载opencv,安装目录中可找到
        face_cascade = cv2.CascadeClassifier("/Users/hehui/Downloads/opencv-3.4.6/data/haarcascades/haarcascade_frontalface_alt.xml")
        for imagePath in ImagePaths:
            try:
                img = cv2.imread(imagePath)
 
                if type(img) != str:
                    faces = face_cascade.detectMultiScale(img, 1.1, 5)
                    if len(faces):
                        for (x, y, w, h) in faces:
                        # 设置人脸宽度大于16像素,去除较小的人脸
                            if w>=1 and h>=1:
                            # 以时间戳和读取的排序作为文件名称
                                listStr = [str(int(time.time())), str(count)]
                                fileName = ''.join(listStr)
                            # 扩大图片,可根据坐标调整
                                X = int(x)
                                W = min(int(x + w),img.shape[1])
                                Y = int(y)
                                H = min(int(y + h),img.shape[0])
 
                                f = cv2.resize(img[Y:H, X:W], (W-X,H-Y))
                                cv2.imwrite(targetPath+os.sep+'%s.jpg' % fileName, f)
                                count += 1
                                print  (imagePath + "have face")
                    #else:
                     #   shutil.move(imagePath, invalidPath)
            except:
                continue
    except IOError:
        print ("Error")
    else:
        print ('Find '+str(count-1)+' faces to Destination '+targetPath)
 
if __name__ == '__main__':
    invalidPath = r'/Users/hehui/faceswap/src'
    sourcePath = r'/Users/hehui/faceswap/src/deppf' 
    targetPath = r'/Users/hehui/faceswap/src/depp'
    readPicSaveFace_1(sourcePath,targetPath,invalidPath,'.png','.PNG','jpg','JPG')
    

faceswap模型训练过程准备——提取人脸_第1张图片

你可能感兴趣的:(faceswap模型训练过程准备——提取人脸)