java kafka 多线程消费

我们先来看下简单的kafka生产者和消费者模式代码:

生产者KafkaProducer

/**
 * @author xiaofeng
 * @version V1.0
 * @title: KafkaProducer.java
 * @package: com.yingda.xsignal.app.test
 * @description: kafka生产者demo
 * @date 2018/4/4 0004 上午 11:20
 */
public class KafkaProducer extends Thread {

    private String topic;

    public KafkaProducer(String topic) {
        super();
        this.topic = topic;
    }

    @Override
    public void run() {
        Producer producer = createProducer();
        int i = 0;
        while (true) {
            String msg = "message";
            producer.send(new KeyedMessage, String>(topic, msg + (i++)));
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    private Producer createProducer() {
        Properties properties = new Properties();
        //声明zk
        properties.put("zookeeper.connect", "10.0.2.22:2181");
        properties.put("serializer.class", StringEncoder.class.getName());
        properties.put("metadata.broker.list", "10.0.2.22:9092");
        properties.put("batch.size", 4096);
        return new Producer, String>(new ProducerConfig(properties));
    }


    public static void main(String[] args) {
        new KafkaProducer("TEST_TOPIC").start();
    }

}  

消费者KafkaConsumer

/**
 * @author xiaofeng
 * @version V1.0
 * @title: KafkaConsumer.java
 * @package: com.yingda.xsignal.app.test
 * @description: 单线程消费模式
 * @date 2018/4/4 0004 上午 11:18
 */
public class KafkaConsumer extends Thread {

    private String topic;

    public KafkaConsumer(String topic) {
        super();
        this.topic = topic;
    }

    @Override
    public void run() {
        ConsumerConnector consumer = createConsumer();
        Map, Integer> topicCountMap = Maps.newHashMap();
        // 一次从主题中获取一个数据
        topicCountMap.put(topic, 1);
        Map, Listbyte[], byte[]>>> messageStreams = consumer.createMessageStreams(topicCountMap);
        // 获取每次接收到的这个数据
        KafkaStream<byte[], byte[]> stream = messageStreams.get(topic).get(0);
        ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
        while (iterator.hasNext()) {
            String message = new String(iterator.next().message());
            System.out.println("接收到: " + message);
        }
    }

    private ConsumerConnector createConsumer() {
        Properties properties = new Properties();
//        //声明zk
        properties.put("zookeeper.connect", "10.0.2.22:2181");
//        // 消费组
        properties.put("group.id", "test-group");
        properties.put("key.deserializer", StringDeserializer.class);
        properties.put("value.deserializer", StringDeserializer.class);
        return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
    }

    public static void main(String[] args) {
        new KafkaConsumer("TEST_TOPIC").start();
    }

分别启动producer 和consumer

查看消费者控制台:

java kafka 多线程消费_第1张图片

虽然已成功生产和消费,但是这种消费模式很明显是单个topic和单线程的形式,那么如果我一次性要订阅多个topic 而且需要多线程消费该怎样做呢?接下来让我们一探究竟吧!

构建多线程消费KafkaConsumer

/**
 * @author xiaofeng
 * @version V1.0
 * @title: OrderBackConsumer.java
 * @package: com.yingda.xsignal.app.consumer
 * @description: 订单备份消费者
 * @date 2018/3/16 0016 下午 4:46
 */
public class OrderBackConsumer extends BaseSpringApp {
    protected static final Logger logger = LoggerFactory.getLogger(OrderBackConsumer.class);

    private final ConsumerConnector consumer;
    private final String signalTopic = "SIGNAL_ORDERINFO";
    private final String followTopic = "FOLLOW_ORDERINFO";
    private final String signalHisTopic = "HIS_ORDERINFO";
    private final String followHisTopic = "FOLLOW_HIS_ORDERINFO";

    private ConsumerConfig consumerConfig;

    private static int threadNum = 6;

    /**
     * Set the ThreadPoolExecutor's core pool size.
     */
    private int corePoolSize = 6;
    /**
     * Set the ThreadPoolExecutor's maximum pool size.
     */
    private int maxPoolSize = 200;
    /**
     * Set the capacity for the ThreadPoolExecutor's BlockingQueue.
     */
    private int queueCapacity = 1024;
    /**
     * thread prefix name
     */
    private String ThreadNamePrefix = "kafka-consumer-pool-%d";

    ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
            .setNameFormat(ThreadNamePrefix).build();

    /**
     * Common Thread Pool
     */
    ExecutorService pool = new ThreadPoolExecutor(corePoolSize, maxPoolSize,
            0L, TimeUnit.MILLISECONDS,
            new LinkedBlockingQueue(queueCapacity), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

    public OrderBackConsumer(String[] args) {
        super(args, "classpath:app-KafkaConsumer.xml");
        Properties properties = new Properties();
        //开发环境:10.0.2.22:2181
        properties.put("zookeeper.connect", "10.0.2.22:2181");
        // 组名称
        properties.put("group.id", "back_consumer_group");
        properties.put("key.deserializer", StringDeserializer.class);
        properties.put("value.deserializer", StringDeserializer.class);
        consumerConfig = new ConsumerConfig(properties);
        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
    }

    @Override
    public void shutdown() {
        if (consumer != null) {
            consumer.shutdown();
        }
        if (pool != null) {
            pool.shutdown();
        }
        try {
            if (!pool.awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)) {
                System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
            }
        } catch (InterruptedException e) {
            System.out.println("Interrupted during shutdown, exiting uncleanly");
        }
    }

    public void run(int numThreads) {
        Map, Integer> topicCountMap = Maps.newHashMap();
        topicCountMap.put(signalTopic, new Integer(numThreads));
        topicCountMap.put(followTopic, new Integer(numThreads));
        topicCountMap.put(signalHisTopic, new Integer(numThreads));
        topicCountMap.put(followHisTopic, new Integer(numThreads));
        Map, Listbyte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        consumerMap.values().stream().forEach(value -> {
            Listbyte[], byte[]>> streams = value;
            int threadNumber = 0;
            /**
             * 可以为每隔topic创建一个线程池,因为每个topic我设置的partition=6
             * kafka consumer通过增加线程数来增加消费能力,但是需要足够的分区,如目前我设置的partition=6,那么并发可以启动6个线程同时消费)
             * ExecutorService pool = createThreadPool();
             */
            for (final KafkaStream stream : streams) {
                pool.submit(new KafkaOrderConsumer(stream, threadNumber));
                threadNumber++;
            }
        });
    }

    /**
     * 创建线程池
     *
     * @return
     */
    private ExecutorService createThreadPool() {
        ExecutorService pool = new ThreadPoolExecutor(corePoolSize, maxPoolSize,
                0L, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue(queueCapacity), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());
        return pool;
    }

    public static void main(String[] args) {
        int threads = 1;
        if (args.length < 1) {
            threads = threadNum;
        } else {
            threads = Integer.parseInt(args[0]);
        }

        OrderBackConsumer example = new OrderBackConsumer(args);
        example.run(threads);

        try {
            Thread.sleep(Long.MAX_VALUE);
        } catch (InterruptedException ie) {

        }
        example.shutdown();
    }


/**
 * @author xiaofeng
 * @version V1.0
 * @title: KafkaOrderConsumer.java
 * @package: com.yingda.xsignal.app.service.impl
 * @description: kafka消费服务
 * @date 2018/3/20 0020 下午 8:03
 */
public class KafkaOrderConsumer implements Runnable {
    protected static final Logger logger = LoggerFactory.getLogger(KafkaOrderConsumer.class);

    private KafkaStream stream;
    private int threadNumber;

    public KafkaOrderConsumer(KafkaStream stream, int threadNumber) {
        this.stream = stream;
        this.threadNumber = threadNumber;
    }

    @Override
    public void run() {
        ConsumerIterator<byte[], byte[]> it = stream.iterator();
        while (it.hasNext()) {
            //消费队列内容
            final MessageAndMetadata<byte[], byte[]> messageAndMetadata = it.next();
            try {
                final byte[] messageBytes = (byte[]) messageAndMetadata.message();
                if (messageBytes != null && messageBytes.length > 0) {
                    String content = new String(messageBytes);
                    logger.info("message:'" + content + "'");
                    /**
                     * @// TODO: 2018/3/20 0020 消费入库
                     */
                }
            } catch (Exception e) {
                logger.error("kafka back order consumer error", e);
            }

        }
        logger.info("Shutting down Thread: " + threadNumber);
    }
}

以上代码中,我们创建了一个线程池,线程数为6,因为我设置的partition=6,而且一次性订阅了4个topic(当然这些topic要真实存在哦),测试的时候随便往哪个topic中写数据都可以收到相应的消费数据哦。




你可能感兴趣的:(java)