BAT、网易、蘑菇街面试题整理

  

1. 八种基本数据类型的大小,以及他们的封装类。

byte-Byte      8

char-Character  16

short-Short      16

int-Integer       32

long-Long       64

float-Float       32

double-Double   64

boolean-Boolean  1


2  Switch能否用string做参数?

    在jdk 7之前 Switch只支持bytecharshortint以及其封装类或者Enum类,在jdk 7中String被加上


3.equals==的区别

==是判断两个变量或实例是不是指向同一个内存空间 
equals
是判断两个变量或实例所指向的内存空间的值是不是相同


4.Object有哪些公用方法?

   Equals()

  toString()

  hashCode()

  getClass()

  wait()

  notify()

  notifyAll()


5. Java的四种引用,强弱软虚,用到的场景。

1. 强引用:如果一个对象具有强引用,它就不会被垃圾回收器回收。即使当前内存空间不足,JVM也不会回收它,而是抛出 OutOfMemoryError 错误,使程序异常终止。如果想中断强引用和某个对象之间的关联,可以显式地将引用赋值为null,这样一来的话,JVM在合适的时间就会回收该对象

2. 软引用:在使用软引用时,如果内存的空间足够,软引用就能继续被使用,而不会被垃圾回收器回收,只有在内存不足时,软引用才会被垃圾回收器回收。

3. 弱引用:具有弱引用的对象拥有的生命周期更短暂。因为当 JVM 进行垃圾回收,一旦发现弱引用对象,无论当前内存空间是否充足,都会将弱引用回收。不过由于垃圾回收器是一个优先级较低的线程,所以并不一定能迅速发现弱引用对象

4. 虚引用:顾名思义,就是形同虚设,如果一个对象仅持有虚引用,那么它相当于没有引用,在任何时候都可能被垃圾回收器回收。

 (虚引用补充)虚引用必须和引用队列ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个  虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。如果程序发现某个虚引用已经被加  入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。由于Object.finalize()方法的不安全性、低效性,常常使用虚引用完成对象回收前的资源释放工  作。当GC一但发现了虚引用对象,将会将PhantomReference对象插入ReferenceQueue队列. * 而此时PhantomReference所指向的对象并没有被GC回收,而是要等  到ReferenceQueue被你真正的处理后才会被回收当JVM将虚引用插入到引用队列的时候,虚引用执行的对象内存还是存在的。但是PhantomReference并没有暴露API返回对  象。所以如果我想做清理工作,需要继承PhantomReference类,以便访问它指向的对象。如NIO直接内存的自动回收,就使用到了sun.misc.Cleaner

  使用场景:

①    利用软引用和弱引用解决OOM问题:用一个HashMap来保存图片的路径和相应图片对象关联的软引用之间的映射关系,在内存不足时,JVM会自动回收这些缓存图片对象所占用的空间,从而有效地避免了OOM的问题

②     通过软可及对象重获方法实现Java对象的高速缓存:比如我们创建了一Employee的类,如果每次需要查询一个雇员的信息。哪怕是几秒中之前刚刚查询过的,都要重新构建一个实例,这是需要消耗很多时间的。我们可以通过软引用和 HashMap 的结合,先是保存引用方面:以软引用的方式对一个Employee对象的实例进行引用并保存该引用到HashMap上,key为此雇员的 idvalue为这个对象的软引用,另一方面是取出引用,缓存中是否有该Employee实例的软引用,如果有,从软引用中取得。如果没有软引用,或者从软引用中得到的实例是null,重新构建一个实例,并保存对这个新建实例的软引用


6.  Hashcode的作用,,与 equals 有什么区别

同样用于鉴定2个对象是否相等的,java集合中有 list set 两类,其中 set不允许元素重复实现,那个这个不允许重复实现的方法,如果用 equal去比较的话,如果存在1000个元素,你 new一个新的元素出来,需要去调用1000 equal去逐个和他们比较是否是同一个对象,这样会大大降低效率。hashcode实际上是返回对象的存储地址,如果这个位置上没有元素,就把元素直接存储在上面,如果这个位置上已经存在元素,这个时候才去调用equal方法与新元素进行比较,相同的话就不存了,散列到其他地址上

下面是hashcode的详细介绍:

浅谈Java中的hashcode方法

  哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率。在Java的Object类中有一个方法:

1
public  native  int  hashCode();

  根据这个方法的声明可知,该方法返回一个int类型的数值,并且是本地方法,因此在Object类中并没有给出具体的实现。

  为何Object类需要这样一个方法?它有什么作用呢?今天我们就来具体探讨一下hashCode方法。

一.hashCode方法的作用

  对于包含容器类型的程序设计语言来说,基本上都会涉及到hashCode。在Java中也一样,hashCode方法的主要作用是为了配合基于散列的集合一起正常运行,这样的散列集合包括HashSet、HashMap以及HashTable。

  为什么这么说呢?考虑一种情况,当向集合中插入对象时,如何判别在集合中是否已经存在该对象了?(注意:集合中不允许重复的元素存在)

  也许大多数人都会想到调用equals方法来逐个进行比较,这个方法确实可行。但是如果集合中已经存在一万条数据或者更多的数据,如果采用equals方法去逐一比较,效率必然是一个问题。此时hashCode方法的作用就体现出来了,当集合要添加新的对象时,先调用这个对象的hashCode方法,得到对应的hashcode值,实际上在HashMap的具体实现中会用一个table保存已经存进去的对象的hashcode值,如果table中没有该hashcode值,它就可以直接存进去,不用再进行任何比较了;如果存在该hashcode值, 就调用它的equals方法与新元素进行比较,相同的话就不存了,不相同就散列其它的地址,所以这里存在一个冲突解决的问题,这样一来实际调用equals方法的次数就大大降低了,说通俗一点:Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址,对象的字段等)映射成一个数值,这个数值称作为散列值。下面这段代码是java.util.HashMap的中put方法的具体实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public  V put(K key, V value) {
         if  (key ==  null )
             return  putForNullKey(value);
         int  hash = hash(key.hashCode());
         int  i = indexFor(hash, table.length);
         for  (Entry e = table[i]; e !=  null ; e = e.next) {
             Object k;
             if  (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                 V oldValue = e.value;
                 e.value = value;
                 e.recordAccess( this );
                 return  oldValue;
             }
         }
 
         modCount++;
         addEntry(hash, key, value, i);
         return  null ;
     }

  put方法是用来向HashMap中添加新的元素,从put方法的具体实现可知,会先调用hashCode方法得到该元素的hashCode值,然后查看table中是否存在该hashCode值,如果存在则调用equals方法重新确定是否存在该元素,如果存在,则更新value值,否则将新的元素添加到HashMap中。从这里可以看出,hashCode方法的存在是为了减少equals方法的调用次数,从而提高程序效率。

  如果对于hash表这个数据结构的朋友不清楚,可以参考这几篇博文;

  http://www.cnblogs.com/jiewei915/archive/2010/08/09/1796042.html

  http://www.cnblogs.com/dolphin0520/archive/2012/09/28/2700000.html

  http://www.java3z.com/cwbwebhome/article/article8/83560.html?id=4649

  有些朋友误以为默认情况下,hashCode返回的就是对象的存储地址,事实上这种看法是不全面的,确实有些JVM在实现时是直接返回对象的存储地址,但是大多时候并不是这样,只能说可能存储地址有一定关联。下面是HotSpot JVM中生成hash散列值的实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
static  inline  intptr_t  get_next_hash(Thread * Self, oop obj) {
   intptr_t  value = 0 ;
   if  (hashCode == 0) {
      // This form uses an unguarded global Park-Miller RNG,
      // so it's possible for two threads to race and generate the same RNG.
      // On MP system we'll have lots of RW access to a global, so the
      // mechanism induces lots of coherency traffic.
      value = os::random() ;
   else
   if  (hashCode == 1) {
      // This variation has the property of being stable (idempotent)
      // between STW operations.  This can be useful in some of the 1-0
      // synchronization schemes.
      intptr_t  addrBits =  intptr_t (obj) >> 3 ;
      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   else
   if  (hashCode == 2) {
      value = 1 ;             // for sensitivity testing
   else
   if  (hashCode == 3) {
      value = ++GVars.hcSequence ;
   else
   if  (hashCode == 4) {
      value =  intptr_t (obj) ;
   else  {
      // Marsaglia's xor-shift scheme with thread-specific state
      // This is probably the best overall implementation -- we'll
      // likely make this the default in future releases.
      unsigned t = Self->_hashStateX ;
      t ^= (t << 11) ;
      Self->_hashStateX = Self->_hashStateY ;
      Self->_hashStateY = Self->_hashStateZ ;
      Self->_hashStateZ = Self->_hashStateW ;
      unsigned v = Self->_hashStateW ;
      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
      Self->_hashStateW = v ;
      value = v ;
   }
 
   value &= markOopDesc::hash_mask;
   if  (value == 0) value = 0xBAD ;
   assert  (value != markOopDesc::no_hash,  "invariant" ) ;
   TEVENT (hashCode: GENERATE) ;
   return  value;
}

  该实现位于hotspot/src/share/vm/runtime/synchronizer.cpp文件下。

  因此有人会说,可以直接根据hashcode值判断两个对象是否相等吗?肯定是不可以的,因为不同的对象可能会生成相同的hashcode值。虽然不能根据hashcode值判断两个对象是否相等,但是可以直接根据hashcode值判断两个对象不等,如果两个对象的hashcode值不等,则必定是两个不同的对象。如果要判断两个对象是否真正相等,必须通过equals方法。

  也就是说对于两个对象,如果调用equals方法得到的结果为true,则两个对象的hashcode值必定相等;

  如果equals方法得到的结果为false,则两个对象的hashcode值不一定不同;

  如果两个对象的hashcode值不等,则equals方法得到的结果必定为false;

  如果两个对象的hashcode值相等,则equals方法得到的结果未知。

二.equals方法和hashCode方法

  在有些情况下,程序设计者在设计一个类的时候为需要重写equals方法,比如String类,但是千万要注意,在重写equals方法的同时,必须重写hashCode方法。为什么这么说呢?

  下面看一个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
package  com.cxh.test1;
 
import  java.util.HashMap;
import  java.util.HashSet;
import  java.util.Set;
 
 
class  People{
     private  String name;
     private  int  age;
     
     public  People(String name, int  age) {
         this .name = name;
         this .age = age;
     }  
     
     public  void  setAge( int  age){
         this .age = age;
     }
         
     @Override
     public  boolean  equals(Object obj) {
         // TODO Auto-generated method stub
         return  this .name.equals(((People)obj).name) &&  this .age== ((People)obj).age;
     }
}
 
public  class  Main {
 
     public  static  void  main(String[] args) {
         
         People p1 =  new  People( "Jack" 12 );
         System.out.println(p1.hashCode());
             
         HashMap hashMap =  new  HashMap();
         hashMap.put(p1,  1 );
         
         System.out.println(hashMap.get( new  People( "Jack" 12 )));
     }
}

  在这里我只重写了equals方法,也就说如果两个People对象,如果它的姓名和年龄相等,则认为是同一个人。

  这段代码本来的意愿是想这段代码输出结果为“1”,但是事实上它输出的是“null”。为什么呢?原因就在于重写equals方法的同时忘记重写hashCode方法。

  虽然通过重写equals方法使得逻辑上姓名和年龄相同的两个对象被判定为相等的对象(跟String类类似),但是要知道默认情况下,hashCode方法是将对象的存储地址进行映射。那么上述代码的输出结果为“null”就不足为奇了。原因很简单,p1指向的对象和

  System.out.println(hashMap.get(new People("Jack", 12)));这句中的new People("Jack", 12)生成的是两个对象,它们的存储地址肯定不同。下面是HashMap的get方法的具体实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
public  V get(Object key) {
         if  (key ==  null )
             return  getForNullKey();
         int  hash = hash(key.hashCode());
         for  (Entry e = table[indexFor(hash, table.length)];
              e !=  null ;
              e = e.next) {
             Object k;
             if  (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                 return  e.value;
         }
         return  null ;
     }

  所以在hashmap进行get操作时,因为得到的hashcdoe值不同(注意,上述代码也许在某些情况下会得到相同的hashcode值,不过这种概率比较小,因为虽然两个对象的存储地址不同也有可能得到相同的hashcode值),所以导致在get方法中for循环不会执行,直接返回null。

  因此如果想上述代码输出结果为“1”,很简单,只需要重写hashCode方法,让equals方法和hashCode方法始终在逻辑上保持一致性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
package  com.cxh.test1;
 
import  java.util.HashMap;
import  java.util.HashSet;
import  java.util.Set;
 
 
class  People{
     private  String name;
     private  int  age;
     
     public  People(String name, int  age) {
         this .name = name;
         this .age = age;
     }  
     
     public  void  setAge( int  age){
         this .age = age;
     }
     
     @Override
     public  int  hashCode() {
         // TODO Auto-generated method stub
         return  name.hashCode()* 37 +age;
     }
     
     @Override
     public  boolean  equals(Object obj) {
         // TODO Auto-generated method stub
         return  this .name.equals(((People)obj).name) &&  this .age== ((People)obj).age;
     }
}
 
public  class  Main {
 
     public  static  void  main(String[] args) {
         
         People p1 =  new  People( "Jack" 12 );
         System.out.println(p1.hashCode());
             
         HashMap hashMap =  new  HashMap();
         hashMap.put(p1,  1 );
         
         System.out.println(hashMap.get( new  People( "Jack" 12 )));
     }
}

  这样一来的话,输出结果就为“1”了。

  下面这段话摘自Effective Java一书:

  • 在程序执行期间,只要equals方法的比较操作用到的信息没有被修改,那么对这同一个对象调用多次,hashCode方法必须始终如一地返回同一个整数
  • 如果两个对象根据equals方法比较是相等的,那么调用两个对象的hashCode方法必须返回相同的整数结果。
  • 如果两个对象根据equals方法比较是不等的,则hashCode方法不一定得返回不同的整数。

  对于第二条和第三条很好理解,但是第一条,很多时候就会忽略。在《Java编程思想》一书中的P495页也有同第一条类似的一段话:

  “设计hashCode()时最重要的因素就是:无论何时,对同一个对象调用hashCode()都应该产生同样的值。如果在讲一个对象用put()添加进HashMap时产生一个hashCdoe值,而用get()取出时却产生了另一个hashCode值,那么就无法获取该对象了。所以如果你的hashCode方法依赖于对象中易变的数据,用户就要当心了,因为此数据发生变化时,hashCode()方法就会生成一个不同的散列码”。

  下面举个例子:

  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package  com.cxh.test1;
 
import  java.util.HashMap;
import  java.util.HashSet;
import  java.util.Set;
 
 
class  People{
     private  String name;
     private  int  age;
     
     public  People(String name, int  age) {
         this .name = name;
         this .age = age;
     }  
     
     public  void  setAge( int  age){
         this .age = age;
     }
     
     @Override
     public  int  hashCode() {
         // TODO Auto-generated method stub
         return  name.hashCode()* 37 +age;
     }
     
     @Override
     public  boolean  equals(Object obj) {
         // TODO Auto-generated method stub
         return  this .name.equals(((People)obj).name) &&  this .age== ((People)obj).age;
     }
}
 
public  class  Main {
 
     public  static  void  main(String[] args) {
         
         People p1 =  new  People( "Jack" 12 );
         System.out.println(p1.hashCode());
         
         HashMap hashMap =  new  HashMap();
         hashMap.put(p1,  1 );
         
         p1.setAge( 13 );
         
         System.out.println(hashMap.get(p1));
     }
}

  这段代码输出的结果为“null”,想必其中的原因大家应该都清楚了。

  因此,在设计hashCode方法和equals方法的时候,如果对象中的数据易变,则最好在equals方法和hashCode方法中不要依赖于该字段。



7.   ArrayList、LinkedList、Vector的区别

 ArrayList 和Vector底层是采用数组方式存储数据,Vector由于使用了synchronized方法(线程安全)所以性能上比ArrayList要差,

 LinkedList使用链表实现存储,随机存取比较慢


8.String、StringBuffer与StringBuilder的区别。

    String 类型和 StringBuffer 类型的主要性能区别其实在于 String 是不可变的对象

    StringBufferStringBuilder底层是 char[]数组实现的

    StringBuffer是线程安全的,而StringBuilder是线程不安全的


9.Map、Set、List、Queue、Stack的特点与用法

   

1) Collection
一组"对立"的元素,通常这些元素都服从某种规则
   1.1) List必须保持元素特定的顺序
   1.2) Set不能有重复元素
   1.3) Queue保持一个队列(先进先出)的顺序
    1.4) Stack保持一个栈(后进先出)的顺序
2) Map
一组成对的"键值对"对象


Collection和Map的区别在于容器中每个位置保存的元素个数:

1) Collection 每个位置只能保存一个元素(对象)
2) Map保存的是"键值对",就像一个小型数据库。我们可以通过""找到该键对应的""

2. Java集合类架构层次关系

复制代码
1. Interface Iterable
迭代器接口,这是Collection类的父接口。实现这个Iterable接口的对象允许使用foreach进行遍历,也就是说,所有的Collection集合对象都具有"foreach可遍历性"。这个Iterable接口只
有一个方法: iterator()。它返回一个代表当前集合对象的泛型迭代器,用于之后的遍历操作 1.1 Collection(集合类的顶级接口) Collection是最基本的集合接口,一个Collection代表一组Object的集合,这些Object被称作Collection的元素。Collection是一个接口,用以提供规范定义,不能被实例化使用 1) Set(接口) Set集合类似于一个罐子,"丢进"Set集合里的多个对象之间没有明显的顺序。Set继承自Collection接口,不能包含有重复元素(记住,这是整个Set类层次的共有属性)。 Set判断两个对象相同不是使用"=="运算符,而是根据equals方法。也就是说,我们在加入一个新元素的时候,如果这个新元素对象和Set中已有对象进行注意equals比较都返回false,  
  则Set就会接受这个新元素对象,否则拒绝。 因为Set的这个制约,在使用Set集合的时候,应该注意两点:
1) 为Set集合里的元素的实现类实现一个有效的equals(Object)方法、2) 对Set的构造函数,传入的Collection参数不能包
  含重复的元素
 1.1) HashSet
        HashSet是Set接口的典型实现,HashSet使用HASH算法来存储集合中的元素,因此具有良好的存取和查找性能。当向HashSet集合中存入一个元素时,HashSet会调用该对象的
     hashCode()方法来得到该对象的hashCode值,然后根据该HashCode值决定该对象在HashSet中的存储位置。 值得主要的是,HashSet集合判断两个元素相等的标准是两个对象通过equals()方法比较相等,并且两个对象的hashCode()方法的返回值相等
1.1.1) LinkedHashSet LinkedHashSet集合也是根据元素的hashCode值来决定元素的存储位置,但和HashSet不同的是,它同时使用链表维护元素的次序,这样使得元素看起来是以插入的顺序保存的。
       当遍历LinkedHashSet集合里的元素时,LinkedHashSet将会按元素的添加顺序来访问集合里的元素。 LinkedHashSet需要维护元素的插入顺序,因此性能略低于HashSet的性能,但在迭代访问Set里的全部元素时(遍历)将有很好的性能(链表很适合进行遍历)
1.2) SortedSet 此接口主要用于排序操作,即实现此接口的子类都属于排序的子类 1.2.1) TreeSet TreeSet是SortedSet接口的实现类,TreeSet可以确保集合元素处于排序状态 1.3) EnumSet EnumSet是一个专门为枚举类设计的集合类,EnumSet中所有元素都必须是指定枚举类型的枚举值,该枚举类型在创建EnumSet时显式、或隐式地指定。EnumSet的集合元素也是有序的,
     它们以枚举值在Enum类内的定义顺序来决定集合元素的顺序
 
 2) List(接口)
    List集合代表一个元素有序、可重复的集合,集合中每个元素都有其对应的顺序索引。List集合允许加入重复元素,因为它可以通过索引来访问指定位置的集合元素。List集合默认按元素
   的添加顺序设置元素的索引
2.1) ArrayList ArrayList是基于数组实现的List类,它封装了一个动态的增长的、允许再分配的Object[]数组。 2.2) Vector(类) Vector和ArrayList在用法上几乎完全相同,但由于Vector是一个古老的集合,所以Vector提供了一些方法名很长的方法,但随着JDK1.2以后,java提供了系统的集合框架,就将
     Vector改为实现List接口,统一归入集合框架体系中
2.2.1) Stack Stack是Vector提供的一个子类,用于模拟""这种数据结构(LIFO后进先出) 2.3) LinkedList implements List, Deque。实现List接口,能对它进行队列操作,即可以根据索引来随机访问集合中的元素。同时它还实现Deque接口,即能将LinkedList当作双端队列
     使用。自然也可以被当作"栈来使用"

 3) Queue(接口)
    Queue用于模拟"队列"这种数据结构(先进先出 FIFO)。队列的头部保存着队列中存放时间最长的元素,队列的尾部保存着队列中存放时间最短的元素。新元素插入(offer)到队列的尾部,
   访问元素(poll)操作会返回队列头部的元素,队列不允许随机访问队列中的元素。结合生活中常见的排队就会很好理解这个概念
3.1) PriorityQueue PriorityQueue并不是一个比较标准的队列实现,PriorityQueue保存队列元素的顺序并不是按照加入队列的顺序,而是按照队列元素的大小进行重新排序,这点从它的类名也可以
     看出来
3.2) Deque Deque接口代表一个"双端队列",双端队列可以同时从两端来添加、删除元素,因此Deque的实现类既可以当成队列使用、也可以当成栈使用 3.2.1) ArrayDeque 是一个基于数组的双端队列,和ArrayList类似,它们的底层都采用一个动态的、可重分配的Object[]数组来存储集合元素,当集合元素超出该数组的容量时,系统会在底层重
       新分配一个Object[]数组来存储集合元素
3.2.2) LinkedList

1.2 Map
Map用于保存具有"映射关系"的数据,因此Map集合里保存着两组值,一组值用于保存Map里的key,另外一组值用于保存Map里的value。key和value都可以是任何引用类型的数据。Map的key不允
许重复,即同一个Map对象的任何两个key通过equals方法比较结果总是返回false。 关于Map,我们要从代码复用的角度去理解,java是先实现了Map,然后通过包装了一个所有value都为null的Map就实现了Set集合 Map的这些实现类和子接口中key集的存储形式和Set集合完全相同(即key不能重复) Map的这些实现类和子接口中value集的存储形式和List非常类似(即value可以重复、根据索引来查找)
1) HashMap 和HashSet集合不能保证元素的顺序一样,HashMap也不能保证key-value对的顺序。并且类似于HashSet判断两个key是否相等的标准也是: 两个key通过equals()方法比较返回true、
   同时两个key的hashCode值也必须相等
1.1) LinkedHashMap LinkedHashMap也使用双向链表来维护key-value对的次序,该链表负责维护Map的迭代顺序,与key-value对的插入顺序一致(注意和TreeMap对所有的key-value进行排序进行区
分)
2) Hashtable 是一个古老的Map实现类 2.1) Properties Properties对象在处理属性文件时特别方便(windows平台上的.ini文件),Properties类可以把Map对象和属性文件关联起来,从而可以把Map对象中的key-value对写入到属性文
     件中,也可以把属性文件中的"属性名-属性值"加载到Map对象中 3) SortedMap 正如Set接口派生出SortedSet子接口,SortedSet接口有一个TreeSet实现类一样,Map接口也派生出一个SortedMap子接口,SortedMap接口也有一个TreeMap实现类 3.1) TreeMap TreeMap就是一个红黑树数据结构,每个key-value对即作为红黑树的一个节点。TreeMap存储key-value对(节点)时,需要根据key对节点进行排序。TreeMap可以保证所有的
     key-value对处于有序状态。同样,TreeMap也有两种排序方式: 自然排序、定制排序 4) WeakHashMap WeakHashMap与HashMap的用法基本相似。区别在于,HashMap的key保留了对实际对象的"强引用",这意味着只要该HashMap对象不被销毁,该HashMap所引用的对象就不会被垃圾回收。
  但WeakHashMap的key只保留了对实际对象的弱引用,这意味着如果WeakHashMap对象的key所引用的对象没有被其他强引用变量所引用,则这些key所引用的对象可能被垃圾回收,当垃
  圾回收了该key所对应的实际对象之后,WeakHashMap也可能自动删除这些key所对应的key-value对 5) IdentityHashMap IdentityHashMap的实现机制与HashMap基本相似,在IdentityHashMap中,当且仅当两个key严格相等(key1 == key2)时,IdentityHashMap才认为两个key相等 6) EnumMap EnumMap是一个与枚举类一起使用的Map实现,EnumMap中的所有key都必须是单个枚举类的枚举值。创建EnumMap时必须显式或隐式指定它对应的枚举类。EnumMap根据key的自然顺序
  (即枚举值在枚举类中的定义顺序)
复制代码

BAT、网易、蘑菇街面试题整理_第1张图片

 

 

3. Java集合类的应用场景代码

学习了集合类的基本架构框架之后,我们接着来学习它们各自的应用场景、以及细节处的注意事项

0x1: Set

HashSet

复制代码
import java.util.*; 

//类A的equals方法总是返回true,但没有重写其hashCode()方法。不能保证当前对象是HashSet中的唯一对象
class A
{
    public boolean equals(Object obj)
    {
        return true;
    }
}

//类B的hashCode()方法总是返回1,但没有重写其equals()方法。不能保证当前对象是HashSet中的唯一对象
class B
{
    public int hashCode()
    {
        return 1;
    }
}

//类C的hashCode()方法总是返回2,且有重写其equals()方法
class C
{
    public int hashCode()
    {
        return 2;
    }
    public boolean equals(Object obj)
    {
        return true;
    }
}
public class HashSetTest
{
    public static void main(String[] args) 
    {
        HashSet books = new HashSet();
        //分别向books集合中添加两个A对象,两个B对象,两个C对象
        books.add(new A());
        books.add(new A());

        books.add(new B());
        books.add(new B());

        books.add(new C());
        books.add(new C());
        System.out.println(books);
    }
}
复制代码

result:

[B@1, B@1, C@2, A@3bc257, A@785d65]

可以看到,如果两个对象通过equals()方法比较返回true,但这两个对象的hashCode()方法返回不同的hashCode值时,这将导致HashSet会把这两个对象保存在Hash表的不同位置,从而使对象可以添加成功,这就与Set集合的规则有些出入了。所以,我们要明确的是: equals()决定是否可以加入HashSet、而hashCode()决定存放的位置,它们两者必须同时满足才能允许一个新元素加入HashSet
但是要注意的是: 如果两个对象的hashCode相同,但是它们的equlas返回值不同,HashSet会在这个位置用链式结构来保存多个对象。而HashSet访问集合元素时也是根据元素的HashCode值来快速定位的,这种链式结构会导致性能下降。

所以如果需要把某个类的对象保存到HashSet集合中,我们在重写这个类的equlas()方法和hashCode()方法时,应该尽量保证两个对象通过equals()方法比较返回true时,它们的hashCode()方法返回值也相等

LinkedHashSet

复制代码
import java.util.*; 

public class LinkedHashSetTest
{
    public static void main(String[] args) 
    {
        LinkedHashSet books = new LinkedHashSet();
        books.add("Java");
        books.add("LittleHann");
        System.out.println(books);

        //删除 Java
      books.remove("Java");
        //重新添加 Java
        books.add("Java");
        System.out.println(books);
    }
}
复制代码

元素的顺序总是与添加顺序一致,同时要明白的是,LinkedHashSetTest是HashSet的子类,因此它不允许集合元素重复

TreeSet

复制代码
import java.util.*;

public class TreeSetTest
{
    public static void main(String[] args) 
    {
        TreeSet nums = new TreeSet();
        //向TreeSet中添加四个Integer对象
        nums.add(5);
        nums.add(2);
        nums.add(10);
        nums.add(-9);

        //输出集合元素,看到集合元素已经处于排序状态
        System.out.println(nums);

        //输出集合里的第一个元素
        System.out.println(nums.first());

        //输出集合里的最后一个元素
        System.out.println(nums.last());

        //返回小于4的子集,不包含4
        System.out.println(nums.headSet(4));

        //返回大于5的子集,如果Set中包含5,子集中还包含5
        System.out.println(nums.tailSet(5));

        //返回大于等于-3,小于4的子集。
        System.out.println(nums.subSet(-3 , 4));
    }
}
复制代码

与HashSet集合采用hash算法来决定元素的存储位置不同,TreeSet采用红黑树的数据结构来存储集合元素。TreeSet支持两种排序方式: 自然排序、定制排序
1. 自然排序:

TreeSet会调用集合元素的compareTo(Object obj)方法来比较元素之间的大小关系,然后将集合元素按升序排序,即自然排序。如果试图把一个对象添加到TreeSet时,则该对象的类必须实现Comparable接口,否则程序会抛出异常。

当把一个对象加入TreeSet集合中时,TreeSet会调用该对象的compareTo(Object obj)方法与容器中的其他对象比较大小,然后根据红黑树结构找到它的存储位置。如果两个对象通过compareTo(Object obj)方法比较相等,新对象将无法添加到TreeSet集合中(牢记Set是不允许重复的概念)。

注意: 当需要把一个对象放入TreeSet中,重写该对象对应类的equals()方法时,应该保证该方法与compareTo(Object obj)方法有一致的结果,即如果两个对象通过equals()方法比较返回true时,这两个对象通过compareTo(Object obj)方法比较结果应该也为0(即相等)

看到这里,我们应该明白:

1) 对与Set来说,它定义了equals()为唯一性判断的标准,而对于到了具体的实现,HashSet、TreeSet来说,它们又会有自己特有的唯一性判断标准,只有同时满足了才能判定为唯一性
2) 我们在操作这些集合类的时候,对和唯一性判断有关的函数重写要重点关注

2. 定制排序

TreeSet的自然排序是根据集合元素的大小,TreeSet将它们以升序排序。如果我们需要实现定制排序,则可以通过Comparator接口的帮助(类似PHP中的array_map回调处理函数的思想)。该接口里包含一个int compare(T o1, T o2)方法,该方法用于比较大小

复制代码
import java.util.*;

class M
{
    int age;
    public M(int age)
    {
        this.age = age;
    }
    public String toString()
    {
        return "M[age:" + age + "]";
    }
}

public class TreeSetTest4
{
    public static void main(String[] args) 
    {
        TreeSet ts = new TreeSet(new Comparator()
        {
            //根据M对象的age属性来决定大小
            public int compare(Object o1, Object o2)
            {
                M m1 = (M)o1;
                M m2 = (M)o2;
                return m1.age > m2.age ? -1
                    : m1.age < m2.age ? 1 : 0;
            }
        });    
        ts.add(new M(5));
        ts.add(new M(-3));
        ts.add(new M(9));
        System.out.println(ts);
    }
}
复制代码

看到这里,我们需要梳理一下关于排序的概念

1) equals、compareTo决定的是怎么比的问题,即用什么field进行大小比较
2) 自然排序、定制排序、Comparator决定的是谁大的问题,即按什么顺序(升序、降序)进行排序
它们的关注点是不同的,一定要注意区分

EnumSet

 

复制代码
import java.util.*;

enum Season
{
    SPRING,SUMMER,FALL,WINTER
}
public class EnumSetTest
{
    public static void main(String[] args) 
    {
        //创建一个EnumSet集合,集合元素就是Season枚举类的全部枚举值
        EnumSet es1 = EnumSet.allOf(Season.class);
        //输出[SPRING,SUMMER,FALL,WINTER]
        System.out.println(es1);

        //创建一个EnumSet空集合,指定其集合元素是Season类的枚举值。
        EnumSet es2 = EnumSet.noneOf(Season.class); 
        //输出[]
        System.out.println(es2); 
        //手动添加两个元素
        es2.add(Season.WINTER);
        es2.add(Season.SPRING);
        //输出[SPRING,WINTER]
        System.out.println(es2);

        //以指定枚举值创建EnumSet集合
        EnumSet es3 = EnumSet.of(Season.SUMMER , Season.WINTER); 
        //输出[SUMMER,WINTER]
        System.out.println(es3);

        EnumSet es4 = EnumSet.range(Season.SUMMER , Season.WINTER); 
        //输出[SUMMER,FALL,WINTER]
        System.out.println(es4);

        //新创建的EnumSet集合的元素和es4集合的元素有相同类型,
        //es5的集合元素 + es4集合元素 = Season枚举类的全部枚举值
        EnumSet es5 = EnumSet.complementOf(es4); 
        //输出[SPRING]
        System.out.println(es5);
    }
}
复制代码

以上就是Set集合类的编程应用场景。那么应该怎样选择何时使用这些集合类呢?

复制代码
1) HashSet的性能总是比TreeSet好(特别是最常用的添加、查询元素等操作),因为TreeSet需要额外的红黑树算法来维护集合元素的次序。只有当需要一个保持排序的Set时,才应该使用TreeSet,否则都应该使用HashSet
2) 对于普通的插入、删除操作,LinkedHashSet比HashSet要略慢一点,这是由维护链表所带来的开销造成的。不过,因为有了链表的存在,遍历LinkedHashSet会更快
3) EnumSet是所有Set实现类中性能最好的,但它只能保存同一个枚举类的枚举值作为集合元素
4) HashSet、TreeSet、EnumSet都是"线程不安全"的,通常可以通过Collections工具类的synchronizedSortedSet方法来"包装"该Set集合。
SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));
复制代码

 

0x2: List

ArrayList

如果一开始就知道ArrayList集合需要保存多少元素,则可以在创建它们时就指定initialCapacity大小,这样可以减少重新分配的次数,提供性能,ArrayList还提供了如下方法来重新分配Object[]数组

1) ensureCapacity(int minCapacity): 将ArrayList集合的Object[]数组长度增加minCapacity
2) trimToSize(): 调整ArrayList集合的Object[]数组长度为当前元素的个数。程序可以通过此方法来减少ArrayList集合对象占用的内存空间
复制代码
import java.util.*;

public class ListTest
{
    public static void main(String[] args) 
    {
        List books = new ArrayList();
        //向books集合中添加三个元素
        books.add(new String("轻量级Java EE企业应用实战"));
        books.add(new String("疯狂Java讲义"));
        books.add(new String("疯狂Android讲义"));
        System.out.println(books);

        //将新字符串对象插入在第二个位置
        books.add(1 , new String("疯狂Ajax讲义"));
        for (int i = 0 ; i < books.size() ; i++ )
        {
            System.out.println(books.get(i));
        }

        //删除第三个元素
        books.remove(2);
        System.out.println(books);

        //判断指定元素在List集合中位置:输出1,表明位于第二位
        System.out.println(books.indexOf(new String("疯狂Ajax讲义")));  ////将第二个元素替换成新的字符串对象
        books.set(1, new String("LittleHann"));
        System.out.println(books);

        //将books集合的第二个元素(包括)
        //到第三个元素(不包括)截取成子集合
        System.out.println(books.subList(1 , 2));
    }

复制代码

Stack

注意Stack的后进先出的特点

复制代码
import java.util.*;

public class VectorTest
{
    public static void main(String[] args) 
    {
        Stack v = new Stack();
        //依次将三个元素push入"栈"
        v.push("疯狂Java讲义");
        v.push("轻量级Java EE企业应用实战");
        v.push("疯狂Android讲义");

        //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义]
        System.out.println(v);

        //访问第一个元素,但并不将其pop出"栈",输出:疯狂Android讲义
        System.out.println(v.peek());

        //依然输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义]
        System.out.println(v);

        //pop出第一个元素,输出:疯狂Android讲义
        System.out.println(v.pop());

        //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战]
        System.out.println(v);
    }
}
复制代码

LinkedList

复制代码
import java.util.*;

public class LinkedListTest
{
    public static void main(String[] args) 
    {
        LinkedList books = new LinkedList();

        //将字符串元素加入队列的尾部(双端队列)
        books.offer("疯狂Java讲义");

        //将一个字符串元素加入栈的顶部(双端队列)
        books.push("轻量级Java EE企业应用实战");

        //将字符串元素添加到队列的头(相当于栈的顶部)
        books.offerFirst("疯狂Android讲义");

        for (int i = 0; i < books.size() ; i++ )
        {
            System.out.println(books.get(i));
        }

        //访问、并不删除栈顶的元素
        System.out.println(books.peekFirst());
        //访问、并不删除队列的最后一个元素
        System.out.println(books.peekLast());
        //将栈顶的元素弹出"栈"
        System.out.println(books.pop());
        //下面输出将看到队列中第一个元素被删除
        System.out.println(books);
        //访问、并删除队列的最后一个元素
        System.out.println(books.pollLast());
        //下面输出将看到队列中只剩下中间一个元素:
        //轻量级Java EE企业应用实战
        System.out.println(books);
    }
}
复制代码

从代码中我们可以看到,LinkedList同时表现出了双端队列、栈的用法。功能非常强大

 

0x3: Queue

PriorityQueue

复制代码
import java.util.*;

public class PriorityQueueTest
{
    public static void main(String[] args) 
    {
        PriorityQueue pq = new PriorityQueue();
        //下面代码依次向pq中加入四个元素
        pq.offer(6);
        pq.offer(-3);
        pq.offer(9);
        pq.offer(0);

        //输出pq队列,并不是按元素的加入顺序排列,
        //而是按元素的大小顺序排列,输出[-3, 0, 9, 6]
        System.out.println(pq);
        //访问队列第一个元素,其实就是队列中最小的元素:-3
        System.out.println(pq.poll());
    }
}
复制代码

PriorityQueue不允许插入null元素,它还需要对队列元素进行排序,PriorityQueue的元素有两种排序方式

复制代码
1) 自然排序:
采用自然顺序的PriorityQueue集合中的元素对象都必须实现了Comparable接口,而且应该是同一个类的多个实例,否则可能导致ClassCastException异常
2) 定制排序
创建PriorityQueue队列时,传入一个Comparator对象,该对象负责对队列中的所有元素进行排序
关于自然排序、定制排序的原理和之前说的TreeSet类似
复制代码

 ArrayDeque

复制代码
import java.util.*;

public class ArrayDequeTest
{
    public static void main(String[] args) 
    {
        ArrayDeque stack = new ArrayDeque();
        //依次将三个元素push入"栈"
        stack.push("疯狂Java讲义");
        stack.push("轻量级Java EE企业应用实战");
        stack.push("疯狂Android讲义");

        //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义]
        System.out.println(stack);

        //访问第一个元素,但并不将其pop出"栈",输出:疯狂Android讲义
        System.out.println(stack.peek());

        //依然输出:[疯狂Java讲义, 轻量级Java EE企业应用实战 , 疯狂Android讲义]
        System.out.println(stack);

        //pop出第一个元素,输出:疯狂Android讲义
        System.out.println(stack.pop());

        //输出:[疯狂Java讲义, 轻量级Java EE企业应用实战]
        System.out.println(stack);
    }
}
复制代码

以上就是List集合类的编程应用场景。我们来梳理一下思路

复制代码
1. java提供的List就是一个"线性表接口",ArrayList(基于数组的线性表)、LinkedList(基于链的线性表)是线性表的两种典型实现
2. Queue代表了队列,Deque代表了双端队列(既可以作为队列使用、也可以作为栈使用)
3. 因为数组以一块连续内存来保存所有的数组元素,所以数组在随机访问时性能最好。所以的内部以数组作为底层实现的集合在随机访问时性能最好。
4. 内部以链表作为底层实现的集合在执行插入、删除操作时有很好的性能
5. 进行迭代操作时,以链表作为底层实现的集合比以数组作为底层实现的集合性能好
复制代码

我们之前说过,Collection接口继承了Iterable接口,也就是说,我们以上学习到的所有的Collection集合类都具有"可遍历性"

Iterable接口也是java集合框架的成员,它隐藏了各种Collection实现类的底层细节,向应用程序提供了遍历Collection集合元素的统一编程接口:

1) boolean hasNext(): 是否还有下一个未遍历过的元素
2) Object next(): 返回集合里的下一个元素
3) void remove(): 删除集合里上一次next方法返回的元素

iterator实现遍历:

复制代码
import java.util.*;

public class IteratorTest
{
    public static void main(String[] args) 
    {
        //创建一个集合
        Collection books = new HashSet();
        books.add("轻量级Java EE企业应用实战");
        books.add("疯狂Java讲义");
        books.add("疯狂Android讲义");


        //获取books集合对应的迭代器
        Iterator it = books.iterator();
        while(it.hasNext())
        {
            //it.next()方法返回的数据类型是Object类型,
            //需要强制类型转换
            String book = (String)it.next();
            System.out.println(book);
            if (book.equals("疯狂Java讲义"))
            {
                //从集合中删除上一次next方法返回的元素
                it.remove();
            }
            //对book变量赋值,不会改变集合元素本身
            book = "测试字符串";    
        }
        System.out.println(books);
    }
}
复制代码

从代码可以看出,iterator必须依附于Collection对象,若有一个iterator对象,必然有一个与之关联的Collection对象。

除了可以使用iterator接口迭代访问Collection集合里的元素之外,使用java5提供的foreach循环迭代访问集合元素更加便捷

foreach实现遍历:

复制代码
import java.util.*;

public class ForeachTest
{
    public static void main(String[] args) 
    {
        //创建一个集合
        Collection books = new HashSet();
        books.add(new String("轻量级Java EE企业应用实战"));
        books.add(new String("疯狂Java讲义"));
        books.add(new String("疯狂Android讲义"));

        for (Object obj : books)
        {
            //此处的book变量也不是集合元素本身
            String book = (String)obj;
            System.out.println(book);
            if (book.equals("疯狂Android讲义"))
            {
                //下面代码会引发ConcurrentModificationException异常
                //books.remove(book);      
            }
        }
        System.out.println(books);
    }
}
复制代码

除了Collection固有的iterator()方法,List还额外提供了一个listIterator()方法,该方法返回一个ListIterator对象,ListIterator接口继承了Iterator接口,提供了专门操作List的方法。ListIterator接口在Iterator接口的继承上增加了如下方法:

1) boolean hasPrevious(): 返回该迭代器关联的集合是否还有上一个元素
2) Object previous(): 返回该迭代器的上一个元素(向前迭代)
3) void add(): 在指定位置插入一个元素

ListIterator实现遍历:

复制代码
import java.util.*;

public class ListIteratorTest
{
    public static void main(String[] args) 
    {
        String[] books = {
            "疯狂Java讲义",
            "轻量级Java EE企业应用实战"
        };
        List bookList = new ArrayList();
        for (int i = 0; i < books.length ; i++ )
        {
            bookList.add(books[i]);
        }
        ListIterator lit = bookList.listIterator();
        while (lit.hasNext())
        {
            System.out.println(lit.next());
            lit.add("-------分隔符-------");
        }
        System.out.println("=======下面开始反向迭代=======");
        while(lit.hasPrevious())
        {
            System.out.println(lit.previous());
        }
    }
}
复制代码

 

0x4: Map

HashMap、Hashtable

复制代码
import java.util.*;

class A
{
    int count;
    public A(int count)
    {
        this.count = count;
    }
    //根据count的值来判断两个对象是否相等。
    public boolean equals(Object obj)
    {
        if (obj == this)
            return true;
        if (obj!=null &&
            obj.getClass()==A.class)
        {
            A a = (A)obj;
            return this.count == a.count;
        }
        return false;
    }
    //根据count来计算hashCode值。
    public int hashCode()
    {
        return this.count;
    }
}
class B
{
    //重写equals()方法,B对象与任何对象通过equals()方法比较都相等
    public boolean equals(Object obj)
    {
        return true;
    }
}
public class HashtableTest
{
    public static void main(String[] args) 
    {
        Hashtable ht = new Hashtable();
        ht.put(new A(60000) , "疯狂Java讲义");
        ht.put(new A(87563) , "轻量级Java EE企业应用实战");
        ht.put(new A(1232) , new B());
        System.out.println(ht);

        //只要两个对象通过equals比较返回true,
        //Hashtable就认为它们是相等的value。
        //由于Hashtable中有一个B对象,
        //它与任何对象通过equals比较都相等,所以下面输出true。
        System.out.println(ht.containsValue("测试字符串"));  ////只要两个A对象的count相等,它们通过equals比较返回true,且hashCode相等
        //Hashtable即认为它们是相同的key,所以下面输出true。
        System.out.println(ht.containsKey(new A(87563)));   ////下面语句可以删除最后一个key-value对
        ht.remove(new A(1232));    ////通过返回Hashtable的所有key组成的Set集合,
        //从而遍历Hashtable每个key-value对
        for (Object key : ht.keySet())
        {
            System.out.print(key + "---->");
            System.out.print(ht.get(key) + "\n");
        }
    }
}
复制代码

当使用自定义类作为HashMap、Hashtable的key时,如果重写该类的equals(Object obj)和hashCode()方法,则应该保证两个方法的判断标准一致--当两个key通过equals()方法比较返回true时,两个key的hashCode()的返回值也应该相同

LinkedHashMap

复制代码
import java.util.*;

public class LinkedHashMapTest
{
    public static void main(String[] args) 
    {
        LinkedHashMap scores = new LinkedHashMap();
        scores.put("语文" , 80);
        scores.put("英文" , 82);
        scores.put("数学" , 76);
        //遍历scores里的所有的key-value对
        for (Object key : scores.keySet())
        {
            System.out.println(key + "------>" + scores.get(key));
        }
    }
}
复制代码

Properties

复制代码
import java.util.*;
import java.io.*;

public class PropertiesTest
{
    public static void main(String[] args) throws Exception
    {
        Properties props = new Properties();
        //向Properties中增加属性
        props.setProperty("username" , "yeeku");
        props.setProperty("password" , "123456");

        //将Properties中的key-value对保存到a.ini文件中
        props.store(new FileOutputStream("a.ini"), "comment line");   ////新建一个Properties对象
        Properties props2 = new Properties();
        //向Properties中增加属性
        props2.setProperty("gender" , "male");

        //将a.ini文件中的key-value对追加到props2中
        props2.load(new FileInputStream("a.ini") );    //
        System.out.println(props2);
    }
}
复制代码

Properties还可以把key-value对以XML文件的形式保存起来,也可以从XML文件中加载key-value对

TreeMap

复制代码
import java.util.*;

class R implements Comparable
{
    int count;
    public R(int count)
    {
        this.count = count;
    }
    public String toString()
    {
        return "R[count:" + count + "]";
    }
    //根据count来判断两个对象是否相等。
    public boolean equals(Object obj)
    {
        if (this == obj)
            return true;
        if (obj!=null
            && obj.getClass()==R.class)
        {
            R r = (R)obj;
            return r.count == this.count;
        }
        return false;
    }
    //根据count属性值来判断两个对象的大小。
    public int compareTo(Object obj)
    {
        R r = (R)obj;
        return count > r.count ? 1 :
            count < r.count ? -1 : 0;
    }
}
public class TreeMapTest
{
    public static void main(String[] args) 
    {
        TreeMap tm = new TreeMap();
        tm.put(new R(3) , "轻量级Java EE企业应用实战");
        tm.put(new R(-5) , "疯狂Java讲义");
        tm.put(new R(9) , "疯狂Android讲义");

        System.out.println(tm);

        //返回该TreeMap的第一个Entry对象
        System.out.println(tm.firstEntry());

        //返回该TreeMap的最后一个key值
        System.out.println(tm.lastKey());

        //返回该TreeMap的比new R(2)大的最小key值。
        System.out.println(tm.higherKey(new R(2)));

        //返回该TreeMap的比new R(2)小的最大的key-value对。
        System.out.println(tm.lowerEntry(new R(2)));

        //返回该TreeMap的子TreeMap
        System.out.println(tm.subMap(new R(-1) , new R(4)));
    }
}
复制代码

从代码中可以看出,类似于TreeSet中判断两个元素是否相等的标准,TreeMap中判断两个key相等的标准是: 

1) 两个key通过compareTo()方法返回0
2) equals()放回true

我们在重写这两个方法的时候一定要保证它们的逻辑关系一致。

再次强调一下:

Set和Map的关系十分密切,java源码就是先实现了HashMap、TreeMap等集合,然后通过包装一个所有的value都为null的Map集合实现了Set集合类

WeakHashMap

复制代码
import java.util.*;

public class WeakHashMapTest
{
    public static void main(String[] args) 
    {
        WeakHashMap whm = new WeakHashMap();
        //将WeakHashMap中添加三个key-value对,
        //三个key都是匿名字符串对象(没有其他引用)
        whm.put(new String("语文") , new String("良好"));
        whm.put(new String("数学") , new String("及格"));
        whm.put(new String("英文") , new String("中等"));

        //将WeakHashMap中添加一个key-value对,
        //该key是一个系统缓存的字符串对象。"java"是一个常量字符串强引用
        whm.put("java" , new String("中等"));
        //输出whm对象,将看到4个key-value对。
        System.out.println(whm);
        //通知系统立即进行垃圾回收
        System.gc();
        System.runFinalization();
        //通常情况下,将只看到一个key-value对。
        System.out.println(whm);
    }
}
复制代码

如果需要使用WeakHashMap的key来保留对象的弱引用,则不要让key所引用的对象具有任何强引用,否则将失去使用WeakHashMap的意义

IdentityHashMap

复制代码
import java.util.*;

public class IdentityHashMapTest
{
    public static void main(String[] args) 
    {
        IdentityHashMap ihm = new IdentityHashMap();
        //下面两行代码将会向IdentityHashMap对象中添加两个key-value对
        ihm.put(new String("语文") , 89);
        ihm.put(new String("语文") , 78);

        //下面两行代码只会向IdentityHashMap对象中添加一个key-value对
        ihm.put("java" , 93);
        ihm.put("java" , 98);
        System.out.println(ihm);
    }
} 
复制代码

EnumMap

复制代码
import java.util.*;

enum Season
{
    SPRING,SUMMER,FALL,WINTER
}
public class EnumMapTest
{
    public static void main(String[] args) 
    {
        //创建一个EnumMap对象,该EnumMap的所有key
        //必须是Season枚举类的枚举值
        EnumMap enumMap = new EnumMap(Season.class);
        enumMap.put(Season.SUMMER , "夏日炎炎");
        enumMap.put(Season.SPRING , "春暖花开");
        System.out.println(enumMap);
    }
}
复制代码

与创建普通Map有所区别的是,创建EnumMap是必须指定一个枚举类,从而将该EnumMap和指定枚举类关联起来

以上就是Map集合类的编程应用场景。我们来梳理一下思路

1) HashMap和Hashtable的效率大致相同,因为它们的实现机制几乎完全一样。但HashMap通常比Hashtable要快一点,因为Hashtable需要额外的线程同步控制
2) TreeMap通常比HashMap、Hashtable要慢(尤其是在插入、删除key-value对时更慢),因为TreeMap底层采用红黑树来管理key-value对
3) 使用TreeMap的一个好处就是: TreeMap中的key-value对总是处于有序状态,无须专门进行排序操作


10. HashMapHashTable的区别

1.Hashtable是Dictionary的子类,HashMap是Map接口的一个实现类;
2.Hashtable中的方法是同步的,而HashMap中的方法在缺省情况下是非同步的。即是说,在多线程应用程序中,不用专门的操作就安全地可以使用Hashtable了;而对于HashMap,则需要额外的同步机制。但HashMap的同步问题可通过Collections的一个静态方法得到解决:
Map Collections.synchronizedMap(Map m)
这个方法返回一个同步的Map,这个Map封装了底层的HashMap的所有方法,使得底层的HashMap即使是在多线程的环境中也是安全的。
3.在HashMap中,null可以作为键,这样的键只有一个;可以有一个或多个键所对应的值为null。当get()方法返回null值时,即可以表示HashMap中没有该键,也可以表示该键所对应的值为null。因此,在HashMap中不能由get()方法来判断HashMap中是否存在某个键,而应该用containsKey()方法来判断。


11.HashMapConcurrentHashMap的区别,HashMap的底层源码。

(1)放入HashMap的元素是key-value对。

  (2)底层说白了就是以前数据结构课程讲过的散列结构。

  (3)要将元素放入到hashmap中,那么key的类型必须要实现实现hashcode方法,默认这个方法是根据对象的地址来计算的,具体我也记不太清楚了,接着还必须覆盖对象的equal方法。

  用一张图来表示一下散列结构吧:

  在这里hashCode函数就是用于确定当前key应该放在hash桶里面的位置,这里hash桶可以看成是一个数组,最简单的通过一些取余的方法就能用来确认key应该摆放的位置,而equal函数则是为了与后面的元素之间判断重复。

  好了,这里我们接下来来看看java的这两种类库的用法吧:

  由于他们都实现了Map接口,将元素放进去的方法就是put(a,b),这里我们先来分析比较简单的HashMap吧:

    public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);  //获取当前key的hash值
        int i = indexFor(hash, table.length);  //返回在hash桶里面的位置
        for (Entry e = table[i]; e != null; e = e.next) {  //遍历当前hansh桶后面的元素
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  //如果有相同的key,那么需要替换value
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;  //返回以前的value
            }
        }

        modCount++;
        addEntry(hash, key, value, i);  //放入entry
        return null;
    }

  这个函数其实本身还是很简单的,首先通过hash函数获取当前key的hash值,不过这里需要注意的是,对hashCode方法返回的值HashMap本身还会进行一些处理,具体什么样子的就不细说了,然后再调用indexFor方法用于确定当前key应该属于当前Hash桶的位置,接着就是遍历当前桶后面的链表了,这里equal方法就派上用场了,这里看到如果equal是相等的话,那么就直接用新的value来替换原来的value就好了。。。

  当然最多的情况还是,桶后面的链表没有与当前的key相同的,那么这个时候就需要调用addEntry方法,将要加入的key-value放入到当前的结构中了,那么接下来来看看这个方法的定义吧:

    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);  //相当于重新设置hash桶
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);  //创建新的entry,并将它加入到当前的桶后面的链表中
    }

  其实这个方法很简单,首先来判断当前的桶的大小,如果觉得太小的话,那么需要扩充当前桶的大小,这样可以让添加元素存放的更离散化一些,优化擦入和寻找的效率。

  然后就是创建一个新的entry,用于保存要擦入的key和value,然后再将其链到应该放的桶的链表上就好了。。

  好了,到这里位置,整个HashMap的擦入元素的过程就已经看的很清楚了,在整个这个过程中没有看到有加锁的过程,因此可以说明HashMap是不支持并发的,不是线程安全的,在并发的环境下使用会产生一些不一致的问题。。。

  因此java新的concurrent类库中就有了ConcurrentHashMap用于在并发环境中使用。。

  那么我们再来看看ConcurrentHashMap的put操作是怎么搞的吧:

    public V put(K key, V value) {
        Segment s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);  //获取hash值
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment  //用于获取相应的片段
            s = ensureSegment(j);   //这里表示没有这个片段,那么需要创建这个片段
        return s.put(key, hash, value, false);  //这里就有分段加锁的策略
    }

  这里刚开始跟HashMap都差不太多吧,无非是先获取当前key的hash值,但是接下来进行的工作就不太一样了,这里就有了一个分段的概念:

  ConcurrentHashMap将整个Hash桶进行了分段,也就是将这个大的数组分成了几个小的片段,而且每个小的片段上面都有锁存在,那么在擦入元素的时候就需要先找到应该插入到哪一个片段,然后再在这个片段上面进行擦入,而且这里还需要获取锁。。。。

  那我们来看看这个segment的put方法吧:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
         //这里的锁是计数锁,同一个锁可以被同一个线程获取多次,但是不能被不同的线程获取
            HashEntry node = tryLock() ? null :   //如果获取了当前的segment的锁,那么node为null,待会自己分配就好了
                scanAndLockForPut(key, hash, value);  //如果没有加上锁,那么等吧,有可能的话还要分配entry,反正有时间干嘛不多做一些事情
            V oldValue;
            try {
             //这里表示已经获取了锁,那么将在相应的位置放入entry
                HashEntry[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry first = entryAt(tab, index);  //找到存放entry的桶,然后获取第一个entry
                for (HashEntry e = first;;) {  //从当前的第一个元素开始
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {  //如果key相等,那么直接替换元素
                            oldValue = e.value;  
                            if (!onlyIfAbsent) {
                                e.value = value;   
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                         //如果元素太多了,那么需要重新调整当前的hash结构,让桶变多一些,这样元素放的更离散一些
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();  //这里必须要在finally里面释放已经获取的锁,这样才能保证锁一定会被释放
            }
            return oldValue;
        }



 其实在这里ConcurrentHashMap和HashMap的区别就已经很明显了:

  (1)ConcurrentHashMap对整个桶数组进行了分段,而HashMap则没有

  (2)ConcurrentHashMap在每一个分段上都用锁进行保护,从而让锁的粒度更精细一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。。。

  最后用一张图来表来说明一下ConcurrentHashMap吧:

  最后,在并发的情况下,要么使用concurrent类库中提供的容器,要么就需要自己来管理数据的同步问题了。。。


Hashmap本质是数组加链表。根据key取得hash值,然后计算出数组下标,如果多个key对应到同一个下标,就用链表串起来,新插入的在前面。

  ConcurrentHashMap:在hashMap的基础上,ConcurrentHashMap将数据分为多个segment,默认16个(concurrency level),然后每次操作对一个segment加锁,避免多线程锁的几率,提高并发效率。

 

一、HashMap概述

 

  HashMap基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

 

  值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap。

1  Map map = Collections.synchronizedMap(new HashMap());

 

二、HashMap的数据结构

 HashMap的底层主要是基于数组和链表来实现的,它之所以有相当快的查询速度主要是因为它是通过计算散列码来决定存储的位置,能够很快的计算出对象所存储的位置。HashMap中主要是通过key的hashCode来计算hash值的,只要hashCode相同,计算出来的hash值就一样。如果存储的对象对多了,就有可能不同的对象所算出来的hash值是相同的,这就出现了所谓的hash冲突。学过数据结构的同学都知道,解决hash冲突的方法有很多,HashMap底层是通过链表来解决hash冲突的。

                                      技术分享

从上图中可以看出,HashMap底层就是一个数组结构,数组中存放的是一个Entry对象,如果产生的hash冲突,也就是说要存储的那个位置上面已经存储了对象了,这时候该位置存储的就是一个链表了。我们看看HashMap中Entry类的代码:

 1 static class Entry implements Map.Entry {
 2         final K key;
 3         V value;
 4         Entry next;
 5         final int hash;
 6 
 7         /**
 8          * Creates new entry.
 9          */
10         Entry(int h, K k, V v, Entry n) {
11             value = v;
12             next = n; //hash值冲突后存放在链表的下一个
13             key = k;
14             hash = h;
15         }
16 
17         .........
18     }

HashMap其实就是一个Entry数组,Entry对象中包含了键和值,其中next也是一个Entry对象,它就是用来处理hash冲突的,形成一个链表。

三、HashMap源码分析

  先看看HashMap类中的一些关键属性:

1 transient Entry[] table;//存储元素的实体数组
2 
3 transient int size;//存放元素的个数
4 
5 int threshold; //临界值   当实际大小超过临界值时,会进行扩容threshold = 加载因子*容量
6 
7 final float loadFactor; //加载因子
8 
9 transient int modCount;//被修改的次数

    其中加载因子是表示Hash表中元素的填满的程度.若:加载因子越大,填满的元素越多,好处是,空间利用率高了,但:冲突的机会加大了.反之,加载因子越小,填满的元素越少,
好处是:冲突的机会减小了,但:空间浪费多了.冲突的机会越大,则查找的成本越高.反之,查找的成本越小.因而,查找时间就越小.因此,必须在 "冲突的机会"与"空间利用率"之间寻找一种平衡与折衷. 这种平衡与折衷本质上是数据结构中有名的"时-空"矛盾的平衡与折衷.

  如果机器内存足够,并且想要提高查询速度的话可以将加载因子设置小一点;相反如果机器内存紧张,并且对查询速度没有什么要求的话可以将加载因子设置大一点。不过一般我们都不用去设置它,让它取默认值0.75就好了。

  下面看看HashMap的几个构造方法:

 1 public HashMap(int initialCapacity, float loadFactor) {
 2         //确保数字合法
 3         if (initialCapacity < 0)
 4             throw new IllegalArgumentException("Illegal initial capacity: " +
 5                                                initialCapacity);
 6         if (initialCapacity > MAXIMUM_CAPACITY)
 7             initialCapacity = MAXIMUM_CAPACITY;
 8         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 9             throw new IllegalArgumentException("Illegal load factor: " +
10                                                loadFactor);
11 
12         // Find a power of 2 >= initialCapacity
13         int capacity = 1;   //初始容量
14         while (capacity < initialCapacity)   //确保容量为2的n次幂,使capacity为大于initialCapacity的最小的2的n次幂
15             capacity <<= 1;
16 
17         this.loadFactor = loadFactor;
18         threshold = (int)(capacity * loadFactor);
19         table = new Entry[capacity];
20         init();
21     }
22 
23     public HashMap(int initialCapacity) {
24         this(initialCapacity, DEFAULT_LOAD_FACTOR);
25     }
26 
27     public HashMap() {
28         this.loadFactor = DEFAULT_LOAD_FACTOR;
29         threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
30         table = new Entry[DEFAULT_INITIAL_CAPACITY];
31         init();
32     }

  我们可以看到在构造HashMap的时候如果我们指定了加载因子和初始容量的话就调用第一个构造方法,否则的话就是用默认的。默认初始容量为16,默认加载因子为0.75。我们可以看到上面代码中13-15行,这段代码的作用是确保容量为2的n次幂,使capacity为大于initialCapacity的最小的2的n次幂,至于为什么要把容量设置为2的n次幂,我们等下再看。

  下面看看HashMap存储数据的过程是怎样的,首先看看HashMap的put方法:

 1 public V put(K key, V value) {
 2         if (key == null) //如果键为null的话,调用putForNullKey(value)
 3             return putForNullKey(value);
 4         int hash = hash(key.hashCode());//根据键的hashCode计算hash码
 5         int i = indexFor(hash, table.length);
 6         for (Entry e = table[i]; e != null; e = e.next) { //处理冲突的,如果hash值相同,则在该位置用链表存储
 7             Object k;
 8             if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { //如果key相同则覆盖并返回旧值
 9                 V oldValue = e.value;
10                 e.value = value;
11                 e.recordAccess(this);
12                 return oldValue;
13             }
14         }
15 
16         modCount++;
17         addEntry(hash, key, value, i);
18         return null;
19     }

当我们往hashmap中put元素的时候,先根据key的hash值得到这个元素在数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。如果这个元素所在的位子上已经存放有其他元素了,那么在同一个位子上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。从hashmap中get元素时,首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。

具体的实现是:

当你的key为null时,会调用putForNullKey,HashMap允许key为null,这样的对像是放在table[0]中。

如果不为空,则调用int hash = hash(key.hashCode());这是hashmap的一个自定义的hash,在key.hashCode()基础上进行二次hash

1 static int hash(int h) {  
2         h ^= (h >>> 20) ^ (h >>> 12);  
3         return h ^ (h >>> 7) ^ (h >>> 4);  
4   }  

得到hash码之后就会通过hash码去计算出应该存储在数组中的索引,计算索引的函数如下:

1 static int indexFor(int h, int length) {  
2        return h & (length-1);  
3    }  

这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的n 次方,这是HashMap在速度上的优化。当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

下面我们继续回到put方法里面,前面已经计算出索引的值了,看到第6到14行,如果数组中该索引的位置的链表已经存在key相同的对象,则将其覆盖掉并返回原先的值。如果没有与key相同的键,则调用addEntry方法创建一个Entry对象,addEntry方法如下:

1 void addEntry(int hash, K key, V value, int bucketIndex) {
2         Entry e = table[bucketIndex]; //如果要加入的位置有值,将该位置原先的值设置为新entry的next,也就是新entry链表的下一个节点
3         table[bucketIndex] = new Entry<>(hash, key, value, e);
4         if (size++ >= threshold) //如果大于临界值就扩容
5             resize(2 * table.length); //以2的倍数扩容
6     }

参数bucketIndex就是indexFor函数计算出来的索引值,第2行代码是取得数组中索引为bucketIndex的Entry对象,第3行就是用hash、key、value构建一个新的Entry对象放到索引为bucketIndex的位置,并且将该位置原先的对象设置为新对象的next构成链表。

  第4行和第5行就是判断put后size是否达到了临界值threshold,如果达到了临界值就要进行扩容,HashMap扩容是扩为原来的两倍。resize()方法如下:

 1 void resize(int newCapacity) {
 2         Entry[] oldTable = table;
 3         int oldCapacity = oldTable.length;
 4         if (oldCapacity == MAXIMUM_CAPACITY) {
 5             threshold = Integer.MAX_VALUE;
 6             return;
 7         }
 8 
 9         Entry[] newTable = new Entry[newCapacity];
10         transfer(newTable);//用来将原先table的元素全部移到newTable里面
11         table = newTable;  //再将newTable赋值给table
12         threshold = (int)(newCapacity * loadFactor);//重新计算临界值
13     }

扩容是需要进行数组复制的,上面代码中第10行为复制数组,复制数组是非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

 

 

 http://www.th7.cn/Program/java/201411/310366.shtml

从JDK1.2起,就有了HashMap,正如前一篇文章所说,HashMap不是线程安全的,因此多线程操作时需要格外小心。

在JDK1.5中,伟大的Doug Lea给我们带来了concurrent包,从此Map也有安全的了。



ConcurrentHashMap具体是怎么实现线程安全的呢,肯定不可能是每个方法加synchronized,那样就变成了HashTable。<http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcD4KPHA+tNNDb25jdXJyZW50SGFzaE1hcLT6wuvW0L/J0tS/tLP2o6zL/NL9yOvBy9K7uPahsLfWts7L+KGxtcS4xcTuo6y+38zlv8nS1MDtveLOqrDR0ru49rTztcRNYXCy8LfWs8lOuPbQobXESGFzaFRhYmxlo6y4+b7da2V5Lmhhc2hDb2RlKCnAtL72tqiw0WtlebfFtb3ExLj2SGFzaFRhYmxl1tChozwvcD4KPHA+1NpDb25jdXJyZW50SGFzaE1hcNbQo6y+zcrHsNFNYXC31rPJwctOuPZTZWdtZW50o6xwdXS6zWdldLXEyrG68qOstrzKx8/WuPm+3WtleS5oYXNoQ29kZSgpy+Oz9rfFtb3ExLj2U2VnbWVudNbQo7o8L3A+CjxwPjxpbWcgc3JjPQ=="http://www.2cto.com/uploadfile/Collfiles/20141106/20141106081435254.png" alt="/">





测试程序:

import java.util.concurrent.ConcurrentHashMap;
public class ConcurrentHashMapTest {		
private static ConcurrentHashMap map = new ConcurrentHashMap();	
public static void main(String[] args) {
		new Thread("Thread1"){	
		@Override			
                    public void run() {		
		map.put(3, 33);			
}		};				
new Thread("Thread2"){			
@Override			
public void run() {				
map.put(4, 44);		
	}		};				
new Thread("Thread3"){	
		@Override			
public void run() {				
map.put(7, 77);			
}		
};		
System.out.println(map);	
}}

ConcurrentHashMap中默认是把segments初始化为长度为16的数组。

根据ConcurrentHashMap.segmentFor的算法,3、4对应的Segment都是segments[1],7对应的Segment是segments[12]。

(1)Thread1和Thread2先后进入Segment.put方法时,Thread1会首先获取到锁,可以进入,而Thread2则会阻塞在锁上:


(2)切换到Thread3,也走到Segment.put方法,因为7所存储的Segment和3、4不同,因此,不会阻塞在lock():



以上就是ConcurrentHashMap的工作机制,通过把整个Map分为N个Segment(类似HashTable),可以提供相同的线程安全,但是效率提升N倍,默认提升16倍。

HashMap和ConcurrentHashMap的区别,HashMap的底层源码。

TreeMapHashMapLindedHashMap的区别。

ava为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类,分别是HashMap Hashtable LinkedHashMap 和TreeMap 
Map主要用于存储健值对,根据键得到值,因此不允许键重复(重复了覆盖了),但允许值重复。 
Hashmap 是一个最常用的Map,它根据键的HashCode 值存储数据,根据键可以直接获取它的值,具有很快的访问速度,遍历时,取得数据的顺序是完全随机的。HashMap最多只允许一条记录的键为Null;允许多条记录的值为 Null;HashMap不支持线程的同步,即任一时刻可以有多个线程同时写HashMap;可能会导致数据的不一致。如果需要同步,可以用 Collections的synchronizedMap方法使HashMap具有同步的能力,或者使用ConcurrentHashMap。 
Hashtable与 HashMap类似,它继承自Dictionary类,不同的是:它不允许记录的键或者值为空;它支持线程的同步,即任一时刻只有一个线程能写Hashtable,因此也导致了 Hashtable在写入时会比较慢。 
LinkedHashMap保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的.也可以在构造时用带参数,按照应用次数排序。在遍历的时候会比HashMap慢,不过有种情况例外,当HashMap容量很大,实际数据较少时,遍历起来可能会比LinkedHashMap慢,因为LinkedHashMap的遍历速度只和实际数据有关,和容量无关,而HashMap的遍历速度和他的容量有关。 
TreeMap实现SortMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator 遍历TreeMap时,得到的记录是排过序的。 

一般情况下,我们用的最多的是HashMap,HashMap里面存入的键值对在取出的时候是随机的,它根据键的HashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度。在Map 中插入、删除和定位元素,HashMap 是最好的选择。 
TreeMap取出来的是排序后的键值对。但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好。 
LinkedHashMap 是HashMap的一个子类,如果需要输出的顺序和输入的相同,那么用LinkedHashMap可以实现,它还可以按读取顺序来排列,像连接池中可以应用。以下代码实例可以看出HashMap,LinkedHashMap,TreeMap的区别: 
Java代码   收藏代码
  1. package ceshi;  
  2. import java.util.HashMap;  
  3. import java.util.Iterator;  
  4. import java.util.LinkedHashMap;  
  5. import java.util.Map;  
  6. import java.util.TreeMap;  
  7. public class Ceshi{  
  8. @SuppressWarnings("unchecked")  
  9. public static void main(String[] args) {  
  10.   
  11. //HashMap  
  12. System.out.println("------HashMap无序输出------");  
  13. HashMap hsMap=new HashMap();  
  14. hsMap.put("3""Value3");  
  15. hsMap.put("1""Value1");  
  16. hsMap.put("2""Value2");  
  17. hsMap.put("b""ValueB");  
  18. hsMap.put("a""ValueA");  
  19. Iterator it = hsMap.entrySet().iterator();  
  20. while (it.hasNext()) {  
  21. Map.Entry e = (Map.Entry) it.next();  
  22. System.out.println("Key: " + e.getKey() + "--Value: "  
  23. + e.getValue());  
  24. }  
  25.   
  26. //TreeMap  
  27. System.out.println("------TreeMap按Key排序输出------");  
  28. TreeMap teMap=new TreeMap();  
  29. teMap.put("3""Value3");  
  30. teMap.put("1""Value1");  
  31. teMap.put("2""Value2");  
  32. teMap.put("b""ValueB");  
  33. teMap.put("a""ValueA");  
  34. Iterator tit = teMap.entrySet().iterator();  
  35. while (tit.hasNext()) {  
  36. Map.Entry e = (Map.Entry) tit.next();  
  37. System.out.println("Key: " + e.getKey() + "--Value: "  
  38. + e.getValue());  
  39. }  
  40.   
  41. //LinkedHashMap  
  42. System.out.println("--LinkedHashMap根据输入的顺序输出--");  
  43. LinkedHashMap lhsMap=new LinkedHashMap();  
  44. lhsMap.put("3""Value3");  
  45. lhsMap.put("1""Value1");  
  46. lhsMap.put("2""Value2");  
  47. lhsMap.put("b""ValueB");  
  48. lhsMap.put("a""ValueA");  
  49. Iterator lit = lhsMap.entrySet().iterator();  
  50. while (lit.hasNext()) {  
  51. Map.Entry e = (Map.Entry) lit.next();  
  52. System.out.println("Key: " + e.getKey() + "--Value: "  
  53. + e.getValue());  
  54. }  
  55. }  
  56.   
  57. }  
  58.   
  59. 执行结果为:  
  60. ------HashMap无序输出------  
  61. Key: 3--Value: Value3  
  62. Key: 2--Value: Value2  
  63. Key: 1--Value: Value1  
  64. Key: b--Value: ValueB  
  65. Key: a--Value: ValueA  
  66. ------TreeMap按Key排序输出------  
  67. Key: 1--Value: Value1  
  68. Key: 2--Value: Value2  
  69. Key: 3--Value: Value3  
  70. Key: a--Value: ValueA  
  71. Key: b--Value: ValueB  
  72. --LinkedHashMap根据输入的顺序输出--  
  73. Key: 3--Value: Value3  
  74. Key: 1--Value: Value1  
  75. Key: 2--Value: Value2  
  76. Key: b--Value: ValueB  
  77. Key: a--Value: ValueA  

13.Collection和Collections的区别:

Collection是集合类的上级接口接口主要有Set ListMap 

Collections是针对集合类的一个帮助类,提供了操作集合的工具方法一系列静态方法实现对各种集合的搜索、排序、线程安全化等操作。 






14.try catch finally中,try里有return,finally里还执行吗

1、不管有木有出现异常,finally块中代码都会执行;
2、当try和catch中有return时,finally仍然会执行;
3、finally是在return后面的表达式运算后执行的(此时并没有返回运算后的值,而是先把要返回的值保存起来,管finally中的代码怎么样,返回的值都不会改变,任然是之前保存的值),所以函数返回值是在finally执行前确定的;
4、finally中最好不要包含return,否则程序会提前退出,返回值不是try或catch中保存的返回值。
举例:
情况1:try{} catch(){}finally{} return;
            显然程序按顺序执行。
情况2:try{ return; }catch(){} finally{} return;
          程序执行try块中return之前(包括return语句中的表达式运算)代码;
         再执行finally块,最后执行try中return;
         finally块之后的语句return,因为程序在try中已经return所以不再执行。
情况3:try{ } catch(){return;} finally{} return;
         程序先执行try,如果遇到异常执行catch块,
         有异常:则执行catch中return之前(包括return语句中的表达式运算)代码,再执行finally语句中全部代码,
                     最后执行catch块中return. finally之后也就是4处的代码不再执行。
         无异常:执行完try再finally再return.
情况4:try{ return; }catch(){} finally{return;}
          程序执行try块中return之前(包括return语句中的表达式运算)代码;
          再执行finally块,因为finally块中有return所以提前退出。
情况5:try{} catch(){return;}finally{return;}
          程序执行catch块中return之前(包括return语句中的表达式运算)代码;
          再执行finally块,因为finally块中有return所以提前退出。
情况6:try{ return;}catch(){return;} finally{return;}
          程序执行try块中return之前(包括return语句中的表达式运算)代码;
          有异常:执行catch块中return之前(包括return语句中的表达式运算)代码;
                       则再执行finally块,因为finally块中有return所以提前退出。
          无异常:则再执行finally块,因为finally块中有return所以提前退出。

最终结论:任何执行try 或者catch中的return语句之前,都会先执行finally语句,如果finally存在的话。
                  如果finally中有return语句,那么程序就return了,所以finally中的return是一定会被return的,
                  编译器把finally中的return实现为一个warning。

 

下面是个测试程序
public class FinallyTest  
{
	public static void main(String[] args) {
		 
		System.out.println(new FinallyTest().test());;
	}

	static int test()
	{
		int x = 1;
		try
		{
			x++;
			return x;
		}
		finally
		{
			++x;
		}
	}
}
结果是2。
分析:
	在try语句中,在执行return语句时,要返回的结果已经准备好了,就在此时,程序转到finally执行了。
在转去之前,try中先把要返回的结果存放到不同于x的局部变量中去,执行完finally之后,在从中取出返回结果,
因此,即使finally中对变量x进行了改变,但是不会影响返回结果。
它应该使用栈保存返回值。

15.Exception与Error的包结构,OOM你遇到过哪些情况,SOF你遇到过哪些情况?

Java异常架构图

技术分享

1. Throwable 
Throwable是 Java 语言中所有错误或异常的超类。 
Throwable包含两个子类: Error 和 Exception 。它们通常用于指示发生了异常情况。 
Throwable包含了其线程创建时线程执行堆栈的快照,它提供了printStackTrace()等接口用于获取堆栈跟踪数据等信息。

2. Exception 
Exception及其子类是 Throwable 的一种形式,它指出了合理的应用程序想要捕获的条件。

3. RuntimeException 
RuntimeException是那些可能在 Java 虚拟机正常运行期间抛出的异常的超类。 
编译器不会检查RuntimeException异常。 例如,除数为零时,抛出ArithmeticException异常。RuntimeException是ArithmeticException的超类。当代码发生除数为零的情况时,倘若既"没有通过throws声明抛出ArithmeticException异常",也"没有通过try...catch...处理该异常",也能通过编译。这就是我们所说的"编译器不会检查RuntimeException异常"! 
如果代码会产生RuntimeException异常,则需要通过修改代码进行避免。 例如,若会发生除数为零的情况,则需要通过代码避免该情况的发生!

4. Error 
和Exception一样, Error也是Throwable的子类。 它用于指示合理的应用程序不应该试图捕获的严重问题,大多数这样的错误都是异常条件。 
和RuntimeException一样, 编译器也不会检查Error。

Java将可抛出(Throwable)的结构分为三种类型: 被检查的异常(Checked Exception),运行时异常(RuntimeException)和错误(Error)。

(01) 运行时异常 
定义 : RuntimeException及其子类都被称为运行时异常。 
特点 : Java编译器不会检查它。 也就是说,当程序中可能出现这类异常时,倘若既"没有通过throws声明抛出它",也"没有用try-catch语句捕获它",还是会编译通过。例如,除数为零时产生的ArithmeticException异常,数组越界时产生的IndexOutOfBoundsException异常,fail-fail机制产生的ConcurrentModificationException异常等,都属于运行时异常。 
虽然Java编译器不会检查运行时异常,但是我们也可以通过throws进行声明抛出,也可以通过try-catch对它进行捕获处理。 
如果产生运行时异常,则需要通过修改代码来进行避免。 例如,若会发生除数为零的情况,则需要通过代码避免该情况的发生!

(02) 被检查的异常 
定义 :  Exception类本身,以及Exception的子类中除了"运行时异常"之外的其它子类都属于被检查异常。 
特点 : Java编译器会检查它。 此类异常,要么通过throws进行声明抛出,要么通过try-catch进行捕获处理,否则不能通过编译。例如,CloneNotSupportedException就属于被检查异常。当通过clone()接口去克隆一个对象,而该对象对应的类没有实现Cloneable接口,就会抛出CloneNotSupportedException异常。 
被检查异常通常都是可以恢复的。

(03) 错误 
定义 : Error类及其子类。 
特点 : 和运行时异常一样,编译器也不会对错误进行检查。 
当资源不足、约束失败、或是其它程序无法继续运行的条件发生时,就产生错误。程序本身无法修复这些错误的。例如,VirtualMachineError就属于错误。 
按照Java惯例,我们是不应该是实现任何新的Error子类的!

对于上面的3种结构,我们在抛出异常或错误时,到底该哪一种?《Effective Java》中给出的建议是: 对于可以恢复的条件使用被检查异常,对于程序错误使用运行时异常。

 

OOM:

1,   OutOfMemoryError异常

除了程序计数器外,虚拟机内存的其他几个运行时区域都有发生OutOfMemoryError(OOM)异常的可能,

Java Heap 溢出

一般的异常信息:java.lang.OutOfMemoryError:Java heap spacess

java堆用于存储对象实例,我们只要不断的创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,就会在对象数量达到最大堆容量限制后产生内存溢出异常。

出现这种异常,一般手段是先通过内存映像分析工具(如Eclipse Memory Analyzer)对dump出来的堆转存快照进行分析,重点是确认内存中的对象是否是必要的,先分清是因为内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)。

如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链。于是就能找到泄漏对象时通过怎样的路径与GC Roots相关联并导致垃圾收集器无法自动回收。

如果不存在泄漏,那就应该检查虚拟机的参数(-Xmx与-Xms)的设置是否适当。

2,   虚拟机栈和本地方法栈溢出

如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。

如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常

这里需要注意当栈的大小越大可分配的线程数就越少。

3,   运行时常量池溢出

异常信息:java.lang.OutOfMemoryError:PermGen space

如果要向运行时常量池中添加内容,最简单的做法就是使用String.intern()这个Native方法。该方法的作用是:如果池中已经包含一个等于此String的字符串,则返回代表池中这个字符串的String对象;否则,将此String对象包含的字符串添加到常量池中,并且返回此String对象的引用。由于常量池分配在方法区内,我们可以通过-XX:PermSize和-XX:MaxPermSize限制方法区的大小,从而间接限制其中常量池的容量。

4,   方法区溢出

方法区用于存放Class的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。

异常信息:java.lang.OutOfMemoryError:PermGen space

方法区溢出也是一种常见的内存溢出异常,一个类如果要被垃圾收集器回收,判定条件是很苛刻的。在经常动态生成大量Class的应用中,要特别注意这点。



你可能感兴趣的:(BAT、网易、蘑菇街面试题整理)