牛顿二项式定理(广义二项式定理)

牛顿二项式定理

1、设 α \alpha α是实数。对于所有满足 1 ≤ ∣ x ∣ < ∣ y ∣ 1\le |x|< |y| 1x<y的x和y,有
( x + y ) α = ∑ k = 0 ∞ C α k x k y α − k (x+y)^{\alpha}=\sum_{k=0}^{\infty}C_{\alpha}^k x^ky^{\alpha-k} (x+y)α=k=0Cαkxkyαk

其中 C α 0 = 1 C_{\alpha}^{0}=1 Cα0=1

C α k = α ( α − 1 ) … ( α − k + 1 ) k ! C_{\alpha}^k=\frac {\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} Cαk=k!α(α1)(αk+1) = ( − 1 ) k − α ( − α + 1 ) … ( − α + k − 1 ) k ! = ( − 1 ) k C − α + k − 1 k =(-1)^k\frac {-\alpha(-\alpha+1)\dots(-\alpha+k-1)}{k!}=(-1)^kC_{-\alpha+k-1}^{k} =(1)kk!α(α+1)(α+k1)=(1)kCα+k1k

2、当 α \alpha α为正整数时,当 k > α k>\alpha k>α时, C α k = 0 C_{\alpha}^k=0 Cαk=0,上式变为

( x + y ) α = ∑ k = 0 α C α k x k y α − k (x+y)^{\alpha}=\sum_{k=0}^{\alpha}C_{\alpha}^k x^ky^{\alpha-k} (x+y)α=k=0αCαkxkyαk

3、当 α \alpha α为负整数时,设 z = x y z=\frac xy z=yx,此时 ∣ z ∣ < 1 |z|< 1 z<1
( x + y ) α = y α ( 1 + z ) α (x+y)^{\alpha}=y^{\alpha}(1+z)^{\alpha} (x+y)α=yα(1+z)α

  1. 这样我们只需要讨论 ( 1 + z ) α (1+z)^{\alpha} (1+z)α 就好了
    ( 1 + z ) α = ∑ k = 0 ∞ C α k z k = ∑ k = 0 ∞ ( − 1 ) k C − a + k − 1 k z k (1+z)^{\alpha}=\sum_{k=0}^{\infty}C_{\alpha}^k z^k=\sum_{k=0}^{\infty}(-1)^kC_{-a+k-1}^k z^k (1+z)α=k=0Cαkzk=k=0(1)kCa+k1kzk

  2. α = − 1 , z = − z \alpha=-1,z=-z α=1z=z

( 1 − z ) − 1 = ∑ k = 0 ∞ z k (1-z)^{-1}=\sum_{k=0}^{\infty}z^k (1z)1=k=0zk

相当于普通生成函数1个因子的情况

  1. α = − n , z = − z \alpha=-n,z=-z α=nz=z

( 1 − z ) − n = ∑ k = 0 ∞ C n + k − 1 k z k (1-z)^{-n}=\sum_{k=0}^{\infty}C_{n+k-1}^k z^k (1z)n=k=0Cn+k1kzk

相当于普通生成函数n个因子的情况

你可能感兴趣的:(数学,组合数学)