Chapter 3 3-3 Testing.......1...2..3
The output would all appear on the same line since a newline character is not printed until the last printf call.
3-5 main (Void) // should be lowercase v ( // should be a { INT sum; // should be lowercase int /* COMPUTE RESULT // Needs closing */ sum = 25 + 37 = 19 // Needs ; at the end /* DISPLAY RESULTS // // Needs */ to close comment printf ("The answer is %i/n" sum); // Missing comma return 0; }
4-3 0996 Digits 8 and 9 invalid in octal constant 0x10.5 Decimal point not valid in integer constant 98.7U Unsigned qualifier only valid for integers 1.2Fe-7 Can't use F and e together 0X0G1 G is not a valid hexadecimal digit 17777s s is not a valid qualifier 15,000 Commas not allowed in constants
4-5 d = d
4-7 #include
int main (void) { double result;
result = (3.31e-8 * 2.01e-7) / (7.16e-6 + 2.01e-8); printf ("result = %g/n", result); return 0; }
5-3 #include
int main (void) { int n, triangularNumber;
printf ("TABLE OF TRIANGULAR NUMBERS/n/n"); printf (" n Sum from 1 to n/n"); printf ("--- ---------------/n");
for ( n = 5; n <= 50; n += 5) { triangularNumber = n * (n + 1) / 2; printf ("%2i %i/n", n, triangularNumber); }
return 0; }
5-5 #include
int main (void) { int n, two_to_the_n;
printf ("TABLE OF POWERS OF TWO/n/n"); printf (" n 2 to the n/n"); printf ("--- ----------/n");
two_to_the_n = 1;
for ( n = 0; n <= 10; ++n ) { printf ("%2i %i/n", n, two_to_the_n); two_to_the_n *= 2; }
return 0; }
5-7 The decimal point in the field width causes leading zeroes to be displayed before numbers. This is discussed in more detail in Chapter 16. In this case, it causes a leading zero to appear if the number of cents entered is less than 10 (for example, $29.05).
5-9 // Program 5.2
/* Program to calculate the 200th triangular number Introduction of the for statement */
#include
int main (void) { int n, triangularNumber;
triangularNumber = 0; n = 1;
while ( n <= 200 ) { triangularNumber = triangularNumber + n; n = n + 1; }
printf ("The 200th triangular number is %i/n", triangularNumber);
return 0; }
// --------------------------------------------------- // Program 5.3
// Program to generate a table of triangular numbers
#include
int main (void) { int n, triangularNumber;
printf ("TABLE OF TRIANGULAR NUMBERS/n/n"); printf (" n Sum from 1 to n/n"); printf ("--- ---------------/n");
triangularNumber = 0; n = 1;
while ( n <= 10 ) { triangularNumber += n; printf (" %i %i/n", n, triangularNumber); ++n; }
return 0; }
// --------------------------------------------------- // Program 5.4
#include
int main (void) { int n, number, triangularNumber;
printf ("What triangular number do you want? "); scanf ("%i", &number);
triangularNumber = 0; n = 1;
while ( n <= number ) { triangularNumber += n; ++n; }
printf ("Triangular number %i is %i/n", number, triangularNumber);
return 0; }
// --------------------------------------------------- // Program 5.5
#include
int main (void) { int n, number, triangularNumber, counter;
counter = 1;
while ( counter <= 5 ) { printf ("What triangular number do you want? "); scanf ("%i", &number);
triangularNumber = 0; n = 1;
while ( n <= number ) { triangularNumber += n; ++n; }
printf ("Triangular number %i is %i/n/n", number, triangularNumber);
++counter; }
return 0; }
5-11 // Program to sum the digits in a number
#include
int main (void) { int number, right_digit, sum = 0;
printf ("Enter your number: "); scanf ("%i", &number);
while ( number != 0 ) { right_digit = number % 10; sum += right_digit; number /= 10; }
printf ("The sum of the digits is %i/n", sum);
return 0; }
6-3 #include
int main (void) { int n1, n2;
printf ("Please enter two integers: "); scanf ("%i%i", &n1, &n2);
if (n2 == 0) printf ("Division by zero./n"); else printf ("Result of %i / %i is %.3f/n", n1, n2, (float) n1 / n2);
return 0; }
6-5 A negative number entered for Program 5.9 causes each digit to print out as a negative number. For example, if -123 is entered, the output would look like this: -3-2-1 Here is a corrected version of that program.
// Program to reverse the digits of a number (revised)
#include #include
int main (void) { int number, right_digit; bool isNegative = false;
printf ("Enter your number./n"); scanf ("%i", &number);
/* if keyed-in number is negative, make it positive, but remember it was negative */
if ( number < 0 ) { number = -number; isNegative = true; }
do { right_digit = number % 10; printf ("%i", right_digit); number = number / 10; } while ( number != 0 );
if (isNegative == true) printf ("-");
printf ("/n"); return 0; }
6-7 // Program to generate a table of prime numbers (revised)
#include #include
int main (void) {
int p, d; bool isPrime;
// we start off knowing 2 is prime
printf ("2 ");
// now start testing odd numbers from 3
for ( p = 3; p <= 50; p +=2 ) { isPrime = true;
// only test odd divisors
for ( d = 3; d < p && isPrime == true; d += 2 ) if ( p % d == 0 ) isPrime = false;
if ( isPrime != false ) printf ("%i ", p); }
printf ("/n"); return 0; }
7-3 // Modified Program 7.2 -- uses break statement
#include
int main (void) { int ratingCounters[11], i, response;
for ( i = 1; i <= 10; ++i ) ratingCounters[i] = 0;
printf ("Enter your responses/n"); printf ("When you are done, enter 999/n");
while (1) { scanf ("%i", &response);
if (response == 999) break;
if ( response < 1 || response > 10 ) printf ("Bad response: %i/n", response); else ++ratingCounters[response]; }
printf ("/n/nRating Number of Responses/n"); printf ("------ -------------------/n");
for ( i = 1; i <= 10; ++i ) printf ("%4i%14i/n", i, ratingCounters[i]);
return 0; }
Some people prefer not to use the break statement since it disrupts the normal sequential flow of a program's execution. You can rewrite this program to not use the break statement by replacing the while in the above program with the following equivalent code:
do { scanf ("%i", &response); if (response != 999) if ( response < 1 || response > 10 ) printf ("Bad response: %i/n", response); else ++rating_counters[response]; } while ( response != 999 );
7-5 Each array element is calculated as the sum of the preceding array elements. This produces the following output:
1 1 2 4 8 16 32 64 128 256
7-7 // Prime numbers generated with Sieve of Erasthothenes
int main (void) { int P[151], i, j; int n = 150;
for (i = 2; i <= n; ++i) P[i] = 0;
i = 2;
while (i <= n) { if (P[i] == 0) printf ("%i ", i);
j = 1;
while (i * j <= n) { P[i * j] = 1; ++j; }
++i; }
return 0; }
8-3 Here is a modified square_root function, a sample main routine that calculates the square root of 3 with different values of epsilon, and the output from these calls.
// Function to compute the square root of a number
#include
float squareRoot (float x, float epsilon) { float guess = 1.0;
while ( absoluteValue (guess * guess - x) >= epsilon ) guess = ( x / guess + guess ) / 2.0;
return guess; }
int main (void) { printf ("%f/n", squareRoot (3.0, .1)); printf ("%f/n", squareRoot (3.0, .01)); printf ("%f/n", squareRoot (3.0, .001)); printf ("%f/n", squareRoot (3.0, .0001));
return 0; }
1.750000 1.732143 1.732143 1.732051
8-5 float square_root (float x) { float guess = 1.0; float epsilon = .00001;
while ( absoluteValue((guess * guess) / x - 1.0) >= epsilon ) guess = ( x / guess + guess ) / 2.0;
return guess; }
8-7 long int x_to_the_n (int x, int n) { long int result = 1;
while (n > 0) { result *= x; --n; }
return result; }
8-9 int lcm (int u, int v) { int gcd (int u, int v);
if ( u < 0 || v < 0 ) return 0; else return u * v / gcd (u, v); }
8-11 long int array_sum (int values [], int n) { int i; long int sum = 0;
for ( i = 0; i < n; ++i ) sum += values[i];
return sum; }
8-13 // Sort an array of integers // descending (order == -1) or ascending (order == 1) sort
#include
void sort (int a[], int n, int order) { int i, j, temp;
for ( i = 0; i < n - 1; ++i ) for ( j = i + 1; j < n; ++j ) if ( (order == -1 && a[i] < a[j]) || (order == 1 && a[i] > a[j]) ) { temp = a[i]; a[i] = a[j]; a[j] = temp; } }
int main (void) { int i; int array[16] = { 34, -5, 6, 0, 12, 100, 56, 22, 44, -3, -9, 12, 17, 22, 6, 11 }; void sort (int a[], int n, int order);
printf ("The array before the sort:/n");
for ( i = 0; i < 16; ++i ) printf ("%i ", array[i]);
printf ("/n/nThe array in ascending order:/n");
sort (array, 16, 1);
for ( i = 0; i < 16; ++i ) printf ("%i ", array[i]);
printf ("/n/nThe array in descending order:/n");
sort (array, 16, -1);
for ( i = 0; i < 16; ++i ) printf ("%i ", array[i]);
printf ("/n"); return 0; }
8-15 Here is a modified getNumberAndBase routine. The rest of the program remains unchanged.
void getNumberAndBase (void) { printf ("Number to be converted? "); scanf ("%li", &numberToConvert);
do { printf ("Enter base value between 2 and 16: "); scanf ("%i", &base); } while ( base < 2 || base > 16 ); }
9-3 #include
struct time { int hour; int minutes; int seconds; };
// calculate elapsed time (assume t2 is later than t1)
struct time elapsed_time (struct time t1, struct time t2) {
struct time result = { 0, 0, 0 };
// first subtract the seconds
result.seconds = t2.seconds - t1.seconds;
// if seconds < 0, need to borrow one minute
if (result.seconds < 0) { result.seconds += 60; --t2.minutes; }
// now subtract the minutes
result.minutes = t2.minutes - t1.minutes;
// if minutes < 0, need to borrow one hour
if (result.minutes < 0) { result.minutes += 60; --t2.hour;
}
// now subtract the hours
result.hour = t2.hour - t1.hour;
// if hour < 0, need to borrow one day (crossed midnight)
if (result.hour < 0) result.hour += 24;
return result; }
int main (void) { struct time elapsed_time (struct time t1, struct time t2); struct time t1 = { 3, 45, 15 }, t2 = { 9, 44, 03 }, t3 = {22, 50, 59 }, t4 = { 7, 30, 0 }; struct time result;
result = elapsed_time (t1, t2); printf ("Time between %.2i:%.2i:%.2i and %.2i:%.2i:%.2i " "is %.2i:%.2i:%.2i/n", t1.hour, t1.minutes, t1.seconds, t2.hour, t2.minutes, t2.seconds, result.hour, result.minutes, result.seconds);
result = elapsed_time (t2, t1); printf ("Time between %.2i:%.2i:%.2i and %.2i:%.2i:%.2i " "is %.2i:%.2i:%.2i/n", t2.hour, t2.minutes, t2.seconds, t1.hour, t1.minutes, t1.seconds, result.hour, result.minutes, result.seconds);
result = elapsed_time (t3, t4); printf ("Time between %.2i:%.2i:%.2i and %.2i:%.2i:%.2i " "is %.2i:%.2i:%.2i/n", t3.hour, t3.minutes, t3.seconds, t4.hour, t4.minutes, t4.seconds, result.hour, result.minutes, result.seconds);
return 0; }
Here is some sample output from the program:
Time between 03:45:15 and 09:44:03 is 05:58:48 Time between 09:44:03 and 03:45:15 is 18:01:12 Time between 22:50:59 and 07:30:00 is 08:39:01
9-5 struct dateAndTime clockKeeper (struct dateAndTime dt) { struct time timeUpdate (struct time now); struct date dateUpdate (struct date today);
dt.stime = timeUpdate (dt.stime);
// see if we have to go to the next day
if ( dt.stime.hour == 0 && dt.stime.minutes == 0 && dt.stime.seconds == 0 ) dt.sdate = dateUpdate (dt.sdate);
return dt; }
// Here is a sample main routine and output:
int main (void) { struct dateAndTime dt1 = { { 12, 31, 2004 }, { 23, 59, 59 } }; struct dateAndTime dt2 = { { 2, 28, 2008 }, { 23, 59, 58 } };
printf ("Current date and time is %.2i/%.2i/%.2i " "%.2i:%.2i:%.2i/n", dt1.sdate.month, dt1.sdate.day, dt1.sdate.year, dt1.stime.hour, dt1.stime.minutes, dt1.stime.seconds);
dt1 = clockKeeper (dt1);
printf ("Updated date and time is %.2i/%.2i/%.2i " "%.2i:%.2i:%.2i/n/n", dt1.sdate.month, dt1.sdate.day, dt1.sdate.year, dt1.stime.hour, dt1.stime.minutes, dt1.stime.seconds);
printf ("Current date and time is %.2i/%.2i/%.2i " "%.2i:%.2i:%.2i/n", dt2.sdate.month, dt2.sdate.day, dt2.sdate.year, dt2.stime.hour, dt2.stime.minutes, dt2.stime.seconds);
dt2 = clockKeeper (dt2);
printf ("Updated date and time is %.2i/%.2i/%.2i " "%.2i:%.2i:%.2i/n/n", dt2.sdate.month, dt2.sdate.day, dt2.sdate.year, dt2.stime.hour, dt2.stime.minutes, dt2.stime.seconds);
printf ("Current date and time is %.2i/%.2i/%.2i " "%.2i:%.2i:%.2i/n", dt2.sdate.month, dt2.sdate.day, dt2.sdate.year, dt2.stime.hour, dt2.stime.minutes, dt2.stime.seconds);
dt2 = clockKeeper (dt2);
printf ("Updated date and time is %.2i/%.2i/%.2i " "%.2i:%.2i:%.2i/n/n", dt2.sdate.month, dt2.sdate.day, dt2.sdate.year, dt2.stime.hour, dt2.stime.minutes, dt2.stime.seconds);
return 0; }
Current date and time is 12/31/2004 23:59:59 Updated date and time is 01/01/2005 00:00:00
Current date and time is 02/28/2008 23:59:58 Updated date and time is 02/28/2008 23:59:59
Current date and time is 02/28/2008 23:59:59 Updated date and time is 02/29/2008 00:00:00
10-3 There are many different ways to solve this problem. Here, I replaced the alphabetic function with a function called wordchar that considers not only alphabetic characters but also apostrophes as part of a word. We also added a function called numchar that considers digits, decimal points, commas, and dashes as part of a number. These definitions aren't perfect, but they do work reasonably well without making the program overly complex.
// Function to determine if a character is part of a word
bool wordchar (const char c) { if ( (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '/'' ) return true; else return false; }
// Function to determine if a character is part of a number
bool numchar (const char c) {
if ( (c >= '0' && c <= '9') || c == '.' || c == ',' || c == '-' ) return true; else return false; }
// Function to count the number of words in a string
int countWords (const char string[]) { int i, wordCount = 0; bool lookingForWord = true, wordchar (const char c), numchar (const char c);
for ( i = 0; string[i] != '/0'; ++i ) if ( wordchar (string[i]) || numchar (string[i]) ) { if ( lookingForWord ) { ++wordCount; lookingForWord = false; } } else lookingForWord = true;
return wordCount; }
// Here's a sample main routine and associated output:
int main (void) { char text1[] = "The sum of $552,227 and $-1,204.50 is $551,002.50"; char text2[] = "It isn't that I don't understand you."; int countWords (const char string[]);
printf ("%s -- words = %i/n", text1, countWords (text1)); printf ("%s -- words = %i/n", text2, countWords (text2)); }
The sum of $552,227 and $-1,204.50 is $551,002.50 -- words = 8 It isn't that I don't understand you. -- words = 7
10-5 // find s1 inside source, return index number if found, -1 if not found
int findString (const char source[], const char s[]) { int i, j, foundit = false;
// try each character in source
for ( i = 0; source[i] != '/0' && !foundit; ++i ) { foundit = true;
// now see if corresponding chars from s match
for ( j = 0; s[j] != '/0' && foundit; ++j ) if ( source[j + i] != s[j] || source[j + i] == '/0' ) foundit = false;
if (foundit) return i; }
return -1; }
10-7 /* insert string s into string source starting at i This function uses the stringLength function defined in the chapter.
Note: this function assumes source is big enough to store the inserted string (dangerous!) */
void insertString (char source[], char s[], int i) { int j, lenS, lenSource;
/* first, find out how big the two strings are */
lenSource = stringLength (source); lenS = stringLength (s);
/* sanity check here -- note that i == lenSource effectively concatenates s onto the end of source */
if (i > lenSource) return;
/* now we have to move the characters in source down from the insertion point to make room for s. Note that we copy the string starting from the end to avoid overwriting characters in source. We also copy the terminating null (j starts at lenS) as well since the final result must be null-terminated */
for ( j = lenSource; j >= i; --j ) source [lenS + j] = source [j];
/* we've made room, now copy s into source at the insertion point */
for ( j = 0; j < lenS; ++j ) source [j + i] = s[j]; }
10-9 bool replaceString (char source [], char s1[], char s2[]) { int index;
// first locate s1 inside the source
index = findString (source, s1);
if ( index == -1 ) return false;
// now delete s1 from the source
removeString (source, index, stringLength (s1));
// now insert the new string
insertString (source, s2, index);
return true; }
10-11 #include
int strToInt (const char string[]) { int i = 0, intValue, result = 0; int negative = false;
// test for leading minus sign
if ( string[0] == '-') { negative = true; i = 1; }
while ( string[i] >= '0' && string[i] <= '9' ) { intValue = string[i] - '0'; result = result * 10 + intValue; ++i; }
if ( negative ) result = -result;
return result; }
10-13 void uppercase ( char str[] ) { int i;
for ( i = 0; str[i] != '/0'; ++i ) if ( str[i] >= 'a' && str[i] <= 'z' ) str[i] = str[i] - 'a' + 'A'; }
11-3 You can solve this problem by setting up a "dummy" structure variable called listHead, for example: struct entry listHead;
and you can then set it pointing to the head of the list by assigning the next member of listHead to point to the actual first entry of the list:
listHead.next = &entry1;
Now to insert a new entry called newEntry at the front of the list, you can write:
insertEntry (&new_entry, &list_head);
11-5 struct dentry { int value; struct dentry *next; struct dentry *prev; };
int main (void) { struct dentry n1, n2, n3, *lptr; int i;
n1.value = 100; n2.value = 200; n3.value = 300;
n1.next = &n2; n2.next = &n3; n3.next = (struct dentry *) 0;
n1.prev = (struct dentry *) 0; n2.prev = &n1; n3.prev = &n2;
// forward search through list
lptr = &n1;
while ( lptr != 0 ) {
printf ("%i ", lptr->value); lptr = lptr->next; }
printf ("/n");
// backward search through list
lptr = &n3;
while ( lptr != 0 ) { printf ("%i ", lptr->value); lptr = lptr->prev; }
printf ("/n"); return 0; }
Here's the output from the test program:
100 200 300 300 200 100
11-7 /* Sort an array of integers into ascending order (pointer version ) */
void sort (int *a, int n) { int *aptr1, *aptr2, temp;
for ( aptr1 = a; aptr1 < a + n - 1; ++aptr1 ) for ( aptr2 = aptr1 + 1; aptr2 < a + n; ++aptr2 ) if ( *aptr1 > *aptr2 ) { temp = *aptr1; *aptr1 = *aptr2; *aptr2 = temp; } }
11-9 /* Function to read a line of text from the terminal (pointer version) */
void readLine (char *buffer) { char character;
do { character = getchar (); *buffer++ = character; } while ( character != '/n' );
*(buffer - 1) = '/0'; }
11-11 /* Function to calculate tomorrow's date (pointer version) */
void dateUpdate (struct date *today) { int numberOfDays (struct date d);
if ( today->day != numberOfDays (*today) ) ++today->day; else if ( today->month == 12 ) { /* end of year */ today->day = 1; today->month = 1; ++today->year; } else { /* end of month */ today->day = 1; ++today->month; } }
12-3 int int_size (void) { unsigned int bits; int size = 0;
bits = ~0;
while ( bits ) { ++size; bits >>= 1; }
return size; }
12-5 /* test bit n in word to see if it is on assumes words are 32 bits long */
int bit_test (unsigned int word, int n) { if ( n < 0 || n > 31 ) return 0;
if ( (word >> (31 - n)) & 0x1 ) return 1; else return 0; }
unsigned int bit_set (unsigned int word, int n) { if ( n < 0 || n > 31 ) return 0;
return word | (1 << (31 - n)); }
12-7 // extract count bits from value beginning at bit n
unsigned int bitpat_get (unsigned int value, int n, int count) { int word_size, i;
word_size = int_size (); // From exercise 3
if ( n < 0 || n > word_size || count < 0 || count + n > word_size ) return 0;
// first shift value to the leftmost part of the word
value <<= n;
// now when we shift right, the bits to the left of value will be cleared
return value >> word_size - count; }
13-3 #define MIN(x, y) (((x) < (y)) ? (x) : (y))
13-5 #define SHIFT(value, n) (((n) > 0) ? ((value) << (n)) / : ((value) >> -(n)))
13-7 #define IS_ALPHABETIC(c) (IS_LOWER_CASE (c) || IS_UPPERCASE (c))
13-9 #define ABSOLUTE_VALUE(x) (((x) < 0) ? -(x) : (x))
14-1 typedef int (*FnPtr) (void);
14-3 Expression Type Value
f + i float 101 l / d double 33.3333 i / l + f float 1.0 l * i long 50000 f / 2 float 0.5 i / (d + f) double 6.25 l / (i * 2.0) double 2.5 l + i / (double) l double 501.0
16-3 // Program to copy one file to another
#include
/* convert lowercase to uppercase character */
#define TO_UPPER(c) ((c >= 'a' && c <= 'z') ? c - 'a' + 'A' : c)
int main (void) { char inName[64], outName[64]; FILE *in, *out; int c;
printf ("Enter name of file to be copied: "); scanf ("%63s", inName); printf ("Enter name of output file: "); scanf ("%63s", outName);
if ( (in = (FILE *) fopen (inName, "r")) == NULL ) { fprintf (stderr, "Can't open %s for reading./n", inName); return 1; } else if ( (out = fopen (outName, "w")) == NULL ) { fprintf (stderr, "Can't open %s for writing./n", outName); return 2; }
while ( (c = getc (in)) != EOF ) putc (TO_UPPER (c), out);
printf ("File has been copied./n");
return 0; }
16-5 /* Program to extract columns from each line of a file (similar to the UNIX cut command) */
#include
int main (void) {
char inName[64]; FILE *in; int m, n, curcol, c;
printf ("Enter name of file: "); scanf ("%63s", inName); printf ("Enter starting and ending column numbers: "); scanf ("%i%i", &m, &n);
if ( (in = fopen (inName, "r")) == NULL ) { fprintf (stderr, "Can't open %s for reading./n", inName); return 1; } else { curcol = 1;
while ( (c = getc (in)) != EOF ) { if ( c == '/n' ) { putchar ('/n'); curcol = 0; } else if ( curcol >= m && curcol <= n ) putchar (c);
++curcol; } } }
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 16 |