关于算法和数据结构的整理,让你面对面试从容不破(四)

简言:

      我们今天讲一下排序,现在的博客关于排序的太多太多,大多数都是大同小异,当然我这个也是一样的,因为在怎么讲解它的核心思想不会变,大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。

1.排序算法的执行效率

1)最好情况、最坏情况、平均情况时间复杂度

我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。

2)时间复杂度的系数、常数 、低阶

时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

3) 比较次数和交换(或移动)次数

基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

2.排序算法的内存消耗

算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

3.排序算法的稳定性

 仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

我通过一个例子来解释一下。比如我们有一组数据 293483,按照大小排序之后就是 23348,9

这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。
 

你可能要问了,两个 3 哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?

 很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个 key 来排序。  

4.冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

我用一个例子,带你看下冒泡排序的整个过程。我们要对一组数据 456321,从小到大进行排序。第一次冒泡操作的详细过程就是这样:

关于算法和数据结构的整理,让你面对面试从容不破(四)_第1张图片

经过一次冒泡操作之后,6 这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行 6 次这样的冒泡操作就行了。

关于算法和数据结构的整理,让你面对面试从容不破(四)_第2张图片

刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。我这里还有另外一个例子,这里面给 6 个元素排序,只需要 4 次冒泡操作就可以了。

我们看一下代码的实现是如何实现的:

// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
  if (n <= 1) return;
 
 for (int i = 0; i < n; ++i) {
    // 提前退出冒泡循环的标志位
    boolean flag = false;
    for (int j = 0; j < n - i - 1; ++j) {
      if (a[j] > a[j+1]) { // 交换
        int tmp = a[j];
        a[j] = a[j+1];
        a[j+1] = tmp;
        flag = true;  // 表示有数据交换      
      }
    }
    if (!flag) break;  // 没有数据交换,提前退出
  }
}
  • 冒泡排序是原地排序算法吗?

冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。

  • 冒泡排序是稳定的排序算法吗?

在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

  • 冒泡排序的时间复杂度是多少?

最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)

有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:

有序元素对:a[i] <= a[j], 如果i < j

 

5.插入排序

一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。

关于算法和数据结构的整理,让你面对面试从容不破(四)_第3张图片

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

那插入排序具体是如何借助上面的思想来实现排序的呢?

首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

如图所示,要排序的数据是 456132,其中左侧为已排序区间,右侧是未排序区间。

关于算法和数据结构的整理,让你面对面试从容不破(四)_第4张图片

插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。

对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

为什么说移动次数就等于逆序度呢?我拿刚才的例子画了一个图表,你一看就明白了。满有序度是 n*(n-1)/2=15,初始序列的有序度是 5,所以逆序度是 10。插入排序中,数据移动的个数总和也等于 10=3+3+4

关于算法和数据结构的整理,让你面对面试从容不破(四)_第5张图片

代码展示:

// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {
  if (n <= 1) return;

  for (int i = 1; i < n; ++i) {
    int value = a[i];
    int j = i - 1;
    // 查找插入的位置
    for (; j >= 0; --j) {
      if (a[j] > value) {
        a[j+1] = a[j];  // 数据移动
      } else {
        break;
      }
    }
    a[j+1] = value; // 插入数据
  }
}
  • 插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

  • 插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

  • 插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。

如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)

还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)

 

6.插入排序和冒泡排序谁更受欢迎那?

  • 插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

  • 插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

  • 插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。

如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)

还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)

请看一段代码:

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
   int tmp = a[j];
   a[j] = a[j+1];
   a[j+1] = tmp;
   flag = true;
}

插入排序中数据的移动操作:
if (a[j] > value) {
  a[j+1] = a[j];  // 数据移动
} else {
  break;
}

我们把执行一个赋值语句的时间粗略地计为单位时间(unit_time),然后分别用冒泡排序和插入排序对同一个逆序度是 K 的数组进行排序。用冒泡排序,需要 K 次交换操作,每次需要 3 个赋值语句,所以交换操作总耗时就是 3*K 单位时间。而插入排序中数据移动操作只需要 K 个单位时间。

这个只是我们非常理论的分析,为了实验,针对上面的冒泡排序和插入排序的 Java 代码,我写了一个性能对比测试程序,随机生成 10000 个数组,每个数组中包含 200 个数据,然后在我的机器上分别用冒泡和插入排序算法来排序,冒泡排序算法大约 700ms 才能执行完成,而插入排序只需要 100ms 左右就能搞定!

所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。插入排序的算法思路也有很大的优化空间。

 

你可能感兴趣的:(java,android端)