以下是两个连续的CUDA核函数衔接的一种思路:
要完成的功能:1. 向量的计算computer(暂时以两向量求和为例);2. 对结果向量求和SUM。
思路1:写1个计算的内核函数,中间结果保留,求和函数调用cublas。
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "cublas_v2.h"
#include
#include
#pragma comment(lib, "cublas.lib")
cudaError_t addWithCuda(const int *a, const int *b, unsigned int size, float& sum);
__global__ void addKernel(const int *a, const int *b, float *c)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
// Add vectors in parallel.
float sum = 0.0;
cudaError_t cudaStatus = addWithCuda(a, b, arraySize, sum);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
printf("sum: %f\n", sum);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(const int *a, const int *b, unsigned int size, float& sum)
{
int *dev_a = 0;
int *dev_b = 0;
float *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(float));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel << <1, size >> >(dev_a, dev_b, dev_c);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
cublasHandle_t handle;
cublasStatus_t stat;
stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf("CUBLAS initialization failed\n");
exit(-1);
}
cublasSasum(handle, size, dev_c, 1, &sum);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf("data execution failed");
cublasDestroy(handle);
exit(-1);
}
cublasDestroy(handle);
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
思路2:写两个内核函数,1个调用另外一个(待求证)。
__device__ void sum(const float *c, float* sum){
}
__global__ void calculate(const int *a, const int *b, float *c, float *sum)
{
//calculate....
int i = threadIdx.x;
c[i] = a[i] + b[i];
__syncthreads();
sum(c, sum)
}
思路3:写两个内核函数,顺序执行,即自己动手实现sum函数。
__global__ void calculate(const int *a, const int *b, float *c)
{
//calculate....
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
__global__ void sum(const float *c, float* sum){
}
推荐思路1,因为尽量调用库函数(不自己手写),开发效率会提高。