https://deeplearning4j.org/cn/compare-dl4j-torch7-pylearn
Deeplearning4j不是第一个开源的深度学习项目,但与此前的其他项目相比,DL4J在编程语言和宗旨两方面都独具特色。DL4J是基于JVM、聚焦行业应用且提供商业支持的分布式深度学习框架,其宗旨是在合理的时间内解决各类涉及大量数据的问题。它与Hadoop和Spark集成,可使用任意数量的GPU或CPU运行,而且发生任何问题都可以联系服务热线。
利 Python + NumPy
深度学习领域的学术研究者大多依赖Theano,Theano是深度学习框架中的元老,用Python编写。Theano和NumPy一样,是处理多维数组的学习库。Theano可与其他学习库配合使用,非常适合数据探索和研究活动。
现在已有大量基于Theano的开源深度学习库,包括Keras、 Lasagne和Blocks。这些学习库试着在Theano有时不够直观的界面之上添加一层便于使用的API。(截至2016年3月,另一个与Theano相关的学习库Pylearn2似乎已经停止开发。)
相比之下,Deeplearning4j的目标是成为深度学习领域的Scikit-learn,力求以可扩展、多个GPU或CPU并行的方式让尽可能多的控制点实现自动化,在需要时与Hadoop和Spark集成。
利 Python + NumPy
Torch是用Lua编写的计算框架,支持机器学习算法。谷歌DeepMind、Facebook等大型科技公司使用Torch的某些版本,由内部团队专门负责定制自己的深度学习平台。Lua是上世纪九十年代早期在巴西开发的多范例脚本语言。
Torch7虽然功能强大,但其设计并不适合在两个群体中大范围普及,即主要依赖Python的学术界,以及普遍使用Java的企业软件工程师。Deeplearning4j用Java编写,反映了我们对行业应用和使用便利的重视。我们认为可用性是阻碍深度学习实施工具广泛普及的限制因素。我们认为可扩展性应当通过Hadoop和Spark这样的开源分布式运行时系统来实现自动化。我们还认为,从确保工具正常运作和构建社区两方面来看,提供商业支持的开源框架是最恰当的解决方案。
利 大量模块化组件,容易组合
Caffe是一个广为人知、广泛应用的机器视觉库,将Matlab实现的快速卷积网络移植到了C和C++平台上(参见Steve Yegge关于一个芯片一个芯片地移植C++代码的博客,可以帮助你思考如何在速度和这种特定的技术债务之间进行权衡)。Caffe不适用于文本、声音或时间序列数据等其他类型的深度学习应用。与本文提到的其他一些框架相同,Caffe选择了Python作为其API。
Deeplearning4j和Caffe都可以用卷积网络进行图像分类,这是最先进的技术。与Caffe不同,Deeplearning4j支持任意芯片数的GPU并行运行,并且提供许多看似微不足道,却能使深度学习在多个并行GPU集群上运行得更流畅的功能。虽然在论文中被广泛引述,但Caffe主要用于为其Model Zoo网站提供已预定型的模型。Deeplearning4j正在开发将Caffe模型导入Spark的开发解析器。
利 适合前馈网络和图像处理
CNTK是微软的开源深度学习框架。CNTK的全称是“计算网络工具包。”此学习库包括前馈DNN、卷积网络和循环网络。CNTK提供基于C++代码的Python API。虽然CNTK遵循一个比较宽松的许可协议,却并未采用ASF 2.0、BSD或MIT等一些较为传统的许可协议。
亚马逊的深度可伸缩稀疏张量网络引擎又称DSSTNE,是用于机器学习和深度学习建模的学习库。它是众多最新的开源深度学习库之一,在Tensorflow和CNTK之后发布。DSSTNE主要用C++写成,速度较快,不过吸引到的用户群体规模尚不及其他学习库。
上述开源项目的另一区别在于其许可协议:Theano、Torch和Caffe采用BSD许可协议,未能解决专利和专利争端问题。Deeplearning4j和ND4J采用Apache 2.0许可协议发布。该协议包含专利授权和防止报复性诉讼的条款,也就是说,任何人都可以自由使用遵循Apache 2.0协议的代码创作衍生作品并为其申请专利,但如果对他人提起针对原始代码(此处即DL4J)的专利权诉讼,就会立即丧失对代码的一切专利权。(换言之,这帮助你在诉讼中进行自我防卫,同时阻止你攻击他人。)BSD一般不能解决这个问题。
Deeplearning4j依靠ND4J进行基础的线性代数运算,事实表明其处理大矩阵乘法的速度至少是NumPy的两倍。这正是DL4J被NASA的喷气推进实验室所采用的原因之一。此外,Deeplearning4j为多芯片运行而优化,支持采用CUDA C的x86和GPU。
虽然Torch7和DL4J都采用并行运行,DL4J的并行运行是自动化的。我们实现了从节点(worker nodes)和连接的自动化设置,让用户在Spark、Hadoop或Akka和AWS环境中建立大型并行网络时可以绕过学习库。Deeplearning4j最适合快速解决具体问题。
Deeplearning4j的所有功能参见功能介绍。
经常有人问我们,既然有如此之多的深度学习用户都专注于Python,为什么还选择Java来实施开源深度学习项目。的确,Python有着优越的语法要素,可以直接将矩阵相加,而无需像Java那样先创建显式类。Python还有由Theano、NumPy等原生扩展组成的广泛的科学计算环境。
但Java也具备不少优点。首先,Java语言从根本上看要快于Python。如不考虑依赖用Cython加速的情况,任何用Python写成的代码在根本上速度都相对较慢。不可否认,运算量最大的运算都是用C或C++语言编写的。(此处所说的运算也包括高级机器学习流程中涉及的字符和其他任务。)大多数最初用Python编写的深度学习项目在用于生产时都必须重新编写。Deeplearning4j依靠JavaCPP从Java中调用预编译的本地C++代码,大幅提升定型速度。
其次,大型企业主要使用Java或基于JVM的系统。在企业界,Java依然是应用范围最广的语言。Java是Hadoop、Hive、Lucene和Pig的语言,而它们恰好都是解决机器学习问题的有用工具。也就是说,深度学习本可以帮助许多需要解决现实问题的程序员,但他们却被语言屏障阻碍。我们希望提高深度学习对于这一广大群体的可用性,这些新的用户可以将深度学习直接付诸实用。
第三,为了解决Java缺少强大的科学计算库的问题,我们编写了ND4J。ND4J在分布式CPU或GPU上运行,可以通过Java或Scala的API进行对接。
最后,Java是一种安全的网络语言,本质上具有跨平台的特点,可在Linux服务器、Windows和OSX桌面、安卓手机上运行,还可通过嵌入式Java在物联网的低内存传感器上运行。Torch和Pylearn2通过C++进行优化,优化和维护因而存在困难,而Java则是 "一次编写,随处运行" 的语言,适合需要在多个平台上使用深度学习系统的企业。
生态系统也是为Java增添人气的优势之一。Hadoop是用 Java 实施的;Spark在 Hadoop 的 Yarn 运行时中运行;Akka等开发库让我们能够为 Deeplearning4j 开发分布式系统。总之,对几乎所有应用而言,Java的基础架构都经过反复测试,用Java编写的深度学习网络可以靠近数据,方便广大程序员的工作。Deeplearning4j 可以作为YARN的应用来运行和预配。
Scala、Clojure、Python 和 Ruby等其他通行的语言也可以原生支持 Java。我们选择Java,也是为了尽可能多地覆盖主要的程序员群体。
虽然Java的速度不及 C 和 C++,但它仍比许多人想象得要快,而我们建立的分布式系统可以通过增加节点来提升速度,节点可以是 GPU 或者 CPU。也就是说,如果要速度快,多加几盒处理器就好了。
最后,我们也在用 Java 为 DL4J 打造 NumPy 的基本应用,其中包括 ND-Array。我们相信 Java 的许多缺点都能很快克服,而其优势则大多会长期保持。
我们在打造 Deeplearning4j 和 ND4J 的过程中特别关注Scala,因为我们认为Scala具有成为数据科学主导语言的潜力。用Scala API为JVM编写数值运算、向量化和深度学习库可以帮助整个群体向实现这一目标迈进。
关于DL4J与其他框架的不同之处,也许只需要尝试一下就能有深入的体会。
上文提到的深度学习框架都是比较专业化的框架,此外还有许多通用型的机器学习框架。这里列举主要的几种: