- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 极限求解方法小结
垚武田
数学学习
本文总结了同济版《高等数学》第一章中的极限求解的方法。注:下文中的limx\lim\limits_{x}xlim代表对于limx→x0\lim\limits_{x\tox_0}x→x0lim或者limx→∞\lim\limits_{x\to\infty}x→∞lim都成立无穷大与无穷小第4节,定理2:无穷大的倒数为无穷小,即limxf(x)=∞⇒limx1f(x)=0\lim_{x}f(
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 终于做了一个决定
不吃老鼠的喵
终于做了一个决定,让自己再求学路上再走远一些,然而没有赶告诉身边任何人,一个人默默的进行,怕被嘲笑,怕考不上。然而当我翻开高数习题的时候,还是一脸懵逼了,高等数学,线性代数。指数函数,无界函数都是几个鬼,仿佛没读过大学一样从新开始。开始信心满满的,看到这个立马被憋回去了。高数不行,就从英语开始,入学测试磕磕绊绊的做完了,也不知道能得多少分,还好身在企业的我这些年没把英语荒废了。接下来就是政治和专业
- 高等数学精解【12】
未来之蓝
基础数学与应用数学线性代数数值优化数据压缩高等数学算法
文章目录无损压缩算法常见算法概述1.**霍夫曼编码(HuffmanCoding)**2.**Lempel-Ziv-Welch(LZW)**3.**游程编码(Run-LengthEncoding,RLE)**4.**算术编码(ArithmeticCoding)**5.**DEFLATE**6.转换编码(TransformCoding)7.预测编码(PredictiveCoding)转换编码的无损压缩
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 如何理解三大微分中值定理
感知gcs
算法
文章看原文,自己写的只是备份高等数学强化2:一元函数微分学中值定理极值点拐点_一元函数中值定理-CSDN博客高等数学强化3:一元函数积分学P积分-CSDN博客高等数学强化3:定积分几何应用-CSDN博客
- 育儿|博士“虎爸”逼8岁儿学高数 母亲申请人身保护令
SHIAN孖
近日一则新闻火了,的确让人很上火:博士毕业的毛某经常向8岁儿子、5岁女儿教授中学、大学的知识,让两孩子学习文言文和高等数学,并要求两子女学习至深夜,其在教育子女学习的过程中经常使用侮辱性字眼进行谩骂,有时甚至出现殴打行为。在众人的协调下,毛某认为其管教孩子仅为“家务事”,拒绝协调。因子女的教育问题,亦严重影响了夫妻感情。最终对薄公堂,法院作出裁定:禁止父亲毛某对郑某、小明、小佳及其相关近亲属实施家
- Python在高等数学和线性代数中的应用
学习不止,掉发不停
数学建模python
Python数学实验与建模学习目录1.SymPy工具库1.1符号运算基础1.2用SymPy做符号函数画图2.高等数学的符号解2.1极限2.2导数2.3级数求和2.4泰勒展开2.5不定积分和定积分2.6代数方程2.7微分方程3.高等数学问题的数值解3.1一重积分3.1.1梯形计算3.1.2辛普森计算3.2多重积分3.3非线性方程数值解3.3.1二分法求根3.3.2牛顿迭代法求根3.3.3scipy工
- 【微积分/高等数学】无穷级数 之 和函数的快速求法(九阴真经)
啵啵啵啵哲
高等数学笔记其他经验分享
本笔记资料中的方法是考研数学王谱老师的“九阴真经”,对于求和函数的题可快速解决.现将笔记分享出来,也方便自己翻阅笔记.前言此类题目的出题方式一般为给出无穷级数,要求写出和函数及收敛域.本笔记中的方法是先记住常用的九个无穷级数(不妨称其为“标准型”),对于具体题目,可先将原级数进行因式分解等操作,然后化作九种标准型的和、差即可快速写出和函数.对于收敛域的求法,则可根据阿贝尔判别法求出收敛区间,再对区
- 多看书一定是好事吗?我觉得未必,关键在于你
上善若水游戏人生
说到看书学习,大家第一印象就是博览群书的人,一定是很了不起。的确了不起的人绝大多都是博览群书,但是博览群书的人未必就了不起。我觉得我们无论处在哪个阶段,所处的环境如何,或者说所在某一个时空,都需要满足天时地利人和三才,方能圆满。比如小学时期,你就让小朋友努力去学高等数学,或者对小朋友的期许过高,让他们完成这个年龄段几乎不可能完成的事情。那不是帮他,而是在害他。我知道同学,他从小就不断学各种各样的知
- 【深度学习】前向传播和反向传播(四)
Florrie Zhu
深度学习之基础知识深度学习神经网络反向传播前向传播
文章目录前向传播反向传播总结写在最前面的话:今天要梳理的知识点是深度学习中的前/反向传播的计算,所需要的知识点涉及高等数学中的导数运算。在深度学习中,一个神经网络其实就是多个复合函数组成。函数的本质就是将输入x映射到输出y中,即f(x)=yf(x)=yf(x)=y,而函数中的系数就是我们通过训练确定下来的,那么如何训练这些函数从而确定参数呢?这就涉及网络中的两个计算:前向传播和反向传播。前向传播前
- 又断了一天
静竟
2019.3.5星期二了,离考试时间越来越近有一点担忧虽说是通过性考试但总想努力做到最好比较担心科目三,毕竟是高等数学和线性代数只能说加油!今天要换一个发型,换一个心情微笑着面对总有拨开云雾见青天的时候所以过好当下吧
- 高等数学基础
Geniusvisionary
学习方法
高等数学预备知识一、函数的概念与特性1.函数的定义2.反函数的定义2.1反函数的充分条件3.复合函数的定义3.1复合函数的求导4.函数的4中特性4.1有界性4.2单调性4.3奇偶性4.3.1对称性4.4周期性二、函数的图像1.直角坐标系1.1基本初等函数与初等函数1.2分段函数1.3图像变换2.极坐标系2.1描点法画图2.2用直角系观点画极坐标系的图像3.参数法三、常用基础知识1.数列2.三角函数
- Pytorch 复习总结 1
ScienceLi1125
pythonpytorchpython
Pytorch复习总结,仅供笔者使用,参考教材:《动手学深度学习》本文主要内容为:Pytorch张量的常见运算、线性代数、高等数学、概率论。Pytorch张量的常见运算、线性代数、高等数学、概率论部分见Pytorch复习总结1;Pytorch线性神经网络部分见Pytorch复习总结2;Pytorch多层感知机部分见Pytorch复习总结3;Pytorch深度学习计算部分见Pytorch复习总结4;
- 每日复盘总结day 27
文章正在刷新中
备考科目:英语、高等数学、政治、电子技术倒计时:47天一、我今天的计划是(做了什么)?(1)上午:看新闻时事(2)下午:数学中值定理(3)晚上:读了一篇外刊,然后看40min小视频,接着看电子技术基础视频二、我今天没做好什么?(1)不规则动词还没背,等等睡前复习(2)英语作文还没有看三、我今天有哪些收获?我今天有哪些想法?我是一个比较容易受外界影响的,有时看到身边的人伤心哭了,我也会心情被影响的,
- 神经网络(Nature Network)
栉风沐雪
深度学习神经网络人工智能深度学习
最近接触目标检测较多,再此对最基本的神经网络知识进行补充,本博客适合想入门人工智能、其含有线性代数及高等数学基础的人群观看1.构成由输入层、隐藏层、输出层、激活函数、损失函数组成。输入层:接收原始数据隐藏层:进行特征提取和转换输出层:输出预测结果激活函数:非线性变换损失函数:衡量模型预测结果与真实值之间的差距2.正向传播过程基础的神经网络如下图所示,其中层1为输入层,层2为隐藏层,层3为输出层:每
- 高等数学第一章函数与极限03
考研数学吧
高等数学第一章函数与极限03“如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。”----高斯
- UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0xa6 in position 34: illegal multibyte sequence
何为xl
python乱码pythongbk
python读取TXT文件时出现错误withopen(r'高等数学.txt')asfile_object:contents=file_object.read()print(contents)报错:原因:Unicode的解码(Decode)出现错误(Error)了,以gbk编码的方式去解码(该字符串变成Unicode),但是此处通过gbk的方式,却无法解码(can’tdecode)。“illegal
- 2020年考研数学(二)网授精讲班
出牛不惜
课程学时:65活动学资学习网时间11月11日止,考研资料低至几元,http://xzw.100xuexi.com视频数量:68下载次数:593播放次数:15437更新时间:2019.10.09【网授课程】1.同济大学《高等数学》网授精讲班第一章函数与极限(1)01:07:28第一章函数与极限(2)00:53:21第一章函数与极限(3)00:39:40第一章函数与极限(4)00:41:49第一章函数
- 阿诺尔德论数学教育
高梵1991
从分析的角度而言,从牛顿、莱布尼兹的时代开始,物理与数学就是紧密结合的;普通人眼中的数学,大概也由于微积分的普及特别是被冠以高等数学的名字,成了微积分的代名词;另一方面,分析的种种分支,也表现出极强的生命力,成为数学中极其重要的一大部分。阿诺尔德的观点我觉得要这么理解:数学不应该与物理造成那么深的隔阂。这是很有道理的。作为数学,我们应该知道东西是怎么来的,它的原来的问题是什么样的,虽然从数学来讲它
- 最早玩双十一的那批人,才是薅羊毛大赛的冠军
二叁叁叁
“你昨晚花了多少钱?”“花到没钱。”双十一早就不是以前单纯善良的双十一了,想要搞懂它,不会点pua社会学高等数学心理学经济学,今年都入不了门。从昨晚,你就应该知道,这不是一场简单的战争——院办的狗友从早上开始打开excel,列满自己要买的东西,啥时候领啥红包,怎样才能凑够满减,还有一列是跟京东比比领完各种优惠券以后谁便宜——虽然是简单的加减乘除但算起来不比求导函数简单但今天付了钱以后发现,还是比别
- 2020-03-01
joker_luo
考研复习大纲数学三月~六月初(一轮复习)复习目标:过一遍考研数学一的全部内容(包括高等数学上,下,概率论,线性代表)。复习用书:李永乐复习全书,汤家凤1800题。时间安排:4.10左右结束高数5.10左右结束线性代数6月初结束概率论复习计划:复习以复习用书,课本为主,复习视频为辅助(原则上以1.25倍观看且每天视频时间不能超过2小时)。主要通过观看视频理解基本概念,结合全书以及基础题加深理解。六月
- 【GAMES101】Lecture 16 蒙特卡洛积分
MaolinYe(叶茂林)
GAMES101图形渲染games101
为了后面要讲的路径追踪,需要讲一下这个蒙特卡洛积分,同时需要回顾一下高等数学中的微积分和概率论与统计学的知识目录微积分概念论与统计蒙特卡洛积分微积分定积分是微积分中的一种重要概念,用于计算函数在一个区间上的总体积、总面积或总量,对于一个实函数f(x),定积分可以表示为∫[a,b]f(x)dx,其中[a,b]是积分区间,f(x)是被积函数,dx表示与自变量x相关的微小增量不定积分是微积分中的一种概念
- 数学与计算机(1)- 高等数学
astuv
pythonmatlabmatplotlibnumpyscipy
(原文:https://blog.iyatt.com/?p=12906)1工具1.1Python基础工具Python3.11.2数学模块SymPy1.12SciPy1.11.4NumPy1.26.3ScientificPython(SciPy)是一个基于NumPy的数值计算库,而SymbolicPython(SymPy)是一个符号计算库。交互工具JupyterNotebook7.0.6JN具有笔记
- 每日一记(95)忽略也是一种智慧
相信未来_3257
美国社会学家威廉姆•詹姆士说:“智慧就是懂得该忽略什么的技巧”。读到这句话的时候,我的内心为之一颤。是呀,一个智慧的老师该忽略掉某些事情。忽略一些不影响正常上课的行为小A是个学习成绩很优秀的孩子,但是他有一个不好的习惯,就是上课喜欢偷看课外书。她学了很多知识,虽然才六年级,但是她会背初中所有古诗文,懂得高等数学,还通晓历史知识。课堂上老师讲解的知识点她已经掌握了,这时,我就不会再勉强她,只要不发出
- 生活的幸福感
海娟620
今天工作之余和我师傅闲聊,他突然和我说:我是个特别无趣的人。先介绍下我师傅:博士毕业,现在高校任职,教授级,校外兼职做项目,师母也是博士,高校任职,儿子在上外市上重点初中,家有老人。我感觉很奇怪,在我看来,他是我认识的为数不多的学术性和实际应用都很牛的高校老师,高等数学,各种计算都能驾驭,而且上知天文下知地理,总之,他是我仰视的存在。也许是这几天的工作遇到了瓶颈。师傅和我说:他不是个好丈夫:回家后
- 25考研|660/880/1000/1800全年带刷计划
Czz-coder
考研
作为一个参加过两次研究生考试的老学姐,我觉得考研数学的难度完全取决于你自己我自己就是一个很好的例子21年数学题目是公认的简单,那一年考130+的很多,但是我那一年只考了87分。但是22年又都说是有史以来最难的一年,和20年的难度不相上下,但是我却可以考129分上岸。经历过两次考研,我觉得考研数学之所以难,有下面几点原因:1、知识点多,考研数学1和数学3都包含三本书,分别是高等数学,线性代数和概率论
- 牛頓—偉大的學者,低劣的人品
蓉儿102209
众所周知,牛顿是伟大的物理学家,他发现了物理学著名的三定律:惯性定律、质量加速度定律、作用力和反作用力定律。直到今天,在任何一套中学物理教科书中,都能找得到牛顿物理三定律。宇宙万有引力定律也是他发现的。高中数学中的二项式定理也冠以牛顿的名字。高等数学中有个最著名的公式,叫做"牛顿莱布尼兹公式"。牛顿的名头不可谓不响啊。说牛顿是近代伟大的物理学家,恐怕没有人会有疑义,但是这个伟大的物理学家,却有着低
- 我是一个从小学就开始数学不及格的人,却被逼着学了高等数学。
山妻
大学似乎并不似想象中那样美好。印象深刻是的小学时候,语文老师同我们说,“大学将会是你们最幸福的时光,那时候的自由是现在你们无法想象与感受的。那四年一定是人生路上最绚烂的时光。”于是乎,出于对语文老师博览群书的敬佩,我在心底悄悄地对大学布满了渴望。再后来,大学成了逃离高考的象牙塔,以为只要努力考上了,以后就轻松了,我可以带着好奇与期盼,卸下重重考试排名下的压力,远走高飞。然而可惜的是,现实永远不会给
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持