senet的优点在于增加少量的参数便可以一定程度的提高模型的准确率,是第一个在成型的模型基础之上建立的策略,创新点非常的好,很适合自己创作新模型刷高准确率的一种方法。
本文的代码讲解是以resnet50讲解,上图便是senet的结构,应用于已经构造完成的resnet模型,只不过在加上了一层se结构的卷积。se结构是在特征图最后进行的,out_channels,作为输入,然后经历整个se结构的卷积处理,这种压缩在膨胀的过程可以看做是不同层特征图数据交融,原本进行1X1的卷积就可以加强非线性和跨通道的信息交互。
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d((1,1)),
nn.Conv2d(filter3,filter3//16,kernel_size=1),
nn.ReLU(),
nn.Conv2d(filter3//16,filter3,kernel_size=1),
nn.Sigmoid()
)
SE-resnet-50基本跟resnet-50没有变化,唯一变化就是加上了se这个结构,可以参考我之前写的resnet讲解对比学习,代码也基本相同。卷积的重复利用,所以写成一个板块
class Block(nn.Module):
def __init__(self, in_channels, filters, stride=1, is_1x1conv=False):
super(Block, self).__init__()
filter1, filter2, filter3 = filters
self.is_1x1conv = is_1x1conv
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, filter1, kernel_size=1, stride=stride,bias=False),
nn.BatchNorm2d(filter1),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(filter1, filter2, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(filter2),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(filter2, filter3, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(filter3),
)
if is_1x1conv:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, filter3, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(filter3)
)
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d((1,1)),
nn.Conv2d(filter3,filter3//16,kernel_size=1),
nn.ReLU(),
nn.Conv2d(filter3//16,filter3,kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
x_shortcut = x
x1 = self.conv1(x)
x1 = self.conv2(x1)
x1 = self.conv3(x1)
x2 = self.se(x1)
x1 = x1*x2
if self.is_1x1conv:
x_shortcut = self.shortcut(x_shortcut)
x1 = x1 + x_shortcut
x1 = self.relu(x1)
return x1
这一步的核心之处便是 x1 = x1*x2,利用了pytorch特有的广播机制,这一步便形成了全新的特征图,经过这样的卷积,包含浅层的特征信息,又有增强版的跨层通道的特征图,这样的特征图基本很完善。
输出的结构和上图对应。
import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self, in_channels, filters, stride=1, is_1x1conv=False):
super(Block, self).__init__()
filter1, filter2, filter3 = filters
self.is_1x1conv = is_1x1conv
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, filter1, kernel_size=1, stride=stride,bias=False),
nn.BatchNorm2d(filter1),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(filter1, filter2, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(filter2),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(filter2, filter3, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(filter3),
)
if is_1x1conv:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, filter3, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(filter3)
)
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d((1,1)),
nn.Conv2d(filter3,filter3//16,kernel_size=1),
nn.ReLU(),
nn.Conv2d(filter3//16,filter3,kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
x_shortcut = x
x1 = self.conv1(x)
x1 = self.conv2(x1)
x1 = self.conv3(x1)
x2 = self.se(x1)
x1 = x1*x2
if self.is_1x1conv:
x_shortcut = self.shortcut(x_shortcut)
x1 = x1 + x_shortcut
x1 = self.relu(x1)
return x1
class senet(nn.Module):
def __init__(self,cfg):
super(senet,self).__init__()
classes = cfg['classes']
num = cfg['num']
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.conv2 = self._make_layer(64, (64, 64, 256), num[0],1)
self.conv3 = self._make_layer(256, (128, 128, 512), num[1], 2)
self.conv4 = self._make_layer(512, (256, 256, 1024), num[2], 2)
self.conv5 = self._make_layer(1024, (512, 512, 2048), num[3], 2)
self.global_average_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Sequential(
nn.Linear(2048,classes)
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.global_average_pool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def _make_layer(self,in_channels, filters, num, stride=1):
layers = []
block_1 = Block(in_channels, filters, stride=stride, is_1x1conv=True)
layers.append(block_1)
for i in range(1, num):
layers.append(Block(filters[2], filters, stride=1, is_1x1conv=False))
return nn.Sequential(*layers)
def Senet():
cfg = {
'num':(3,4,6,3),
'classes': (10)
}
return senet(cfg)
net = Senet()
x = torch.rand((10, 3, 224, 224))
for name,layer in net.named_children():
if name != "fc":
x = layer(x)
print(name, 'output shaoe:', x.shape)
else:
x = x.view(x.size(0), -1)
x = layer(x)
print(name, 'output shaoe:', x.shape)