imgaug的使用(二)

1、关键点增强

官方示例

import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage


ia.seed(1)

image = ia.quokka(size=(256, 256))
kps = KeypointsOnImage([
    Keypoint(x=65, y=100),
    Keypoint(x=75, y=200),
    Keypoint(x=100, y=100),
    Keypoint(x=200, y=80)
], shape=image.shape)

seq = iaa.Sequential([
    iaa.Multiply((1.2, 1.5)), # 在不影响keypoints的情况下,改变亮度
    iaa.Affine(
        rotate=10,
        scale=(0.5, 0.7)
    ) # 旋转10度,尺度变50-70%,这个操作影响keypoints
])

# 增强 keypoints and images.
image_aug, kps_aug = seq(image=image, keypoints=kps)

# 打印增强前后
# use after.x_int and after.y_int to get rounded integer coordinates
for i in range(len(kps.keypoints)):
    before = kps.keypoints[i]
    after = kps_aug.keypoints[i]
    print("Keypoint %d: (%.8f, %.8f) -> (%.8f, %.8f)" % (
        i, before.x, before.y, after.x, after.y)
    )

# 带有keypoints的增强前后的图像
image_before = kps.draw_on_image(image, size=7)
image_after = kps_aug.draw_on_image(image_aug, size=7)

imgaug的使用(二)_第1张图片

2、处理画面外的边框

import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage


ia.seed(1)

GREEN = [0, 255, 0]
ORANGE = [255, 140, 0]
RED = [255, 0, 0]

# 填充(黑色和白色)Pad image with a 1px white and (BY-1)px black border
def pad(image, by):
    image_border1 = ia.pad(image, top=1, right=1, bottom=1, left=1,
                           mode="constant", cval=255)
    image_border2 = ia.pad(image_border1, top=by-1, right=by-1,
                           bottom=by-1, left=by-1,
                           mode="constant", cval=0)
    return image_border2

# 在图像上画框
# 在画框之前,通过BORDER扩展图像平面。
# 用绿色标记在图像中的BB框,橙色表示不全在图像里的标记框,红色表示完全不在图像中的标记框
def draw_bbs(image, bbs, border):
    image_border = pad(image, border)
    for bb in bbs.bounding_boxes:
        if bb.is_fully_within_image(image.shape):
            color = GREEN
        elif bb.is_partly_within_image(image.shape):
            color = ORANGE
        else:
            color = RED
        image_border = bb.shift(left=border, top=border)\
                         .draw_on_image(image_border, size=2, color=color)

    return image_border

# 定义仨BBs框相互挨着 Define example image with three small square BBs next to each other.
# 增强BBox   Augment these BBs by shifting them to the right.
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
    BoundingBox(x1=25, x2=75, y1=25, y2=75),
    BoundingBox(x1=100, x2=150, y1=25, y2=75),
    BoundingBox(x1=175, x2=225, y1=25, y2=75)
], shape=image.shape)

seq = iaa.Affine(translate_px={"x": 120})
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

# 画框(a) 是原始的 (b)是增强过后的
# (c) 是增强过后并去除了完全在外面的图像
# (d) 增强图片、移除在外面的、裁剪里面的使里面的可以充满整个画面
image_before = draw_bbs(image, bbs, 100)
image_after1 = draw_bbs(image_aug, bbs_aug, 100)
image_after2 = draw_bbs(image_aug, bbs_aug.remove_out_of_image(), 100)
image_after3 = draw_bbs(image_aug, bbs_aug.remove_out_of_image().clip_out_of_image(), 100)

 imgaug的使用(二)_第2张图片

 

3、移动、变换包围框

import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage


ia.seed(1)

# 定义图像和俩包围框
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
    BoundingBox(x1=25, x2=75, y1=25, y2=75),
    BoundingBox(x1=100, x2=150, y1=25, y2=75)
], shape=image.shape)

# 将两个包围框向右移动25个像素,第二个包围框向下移动25个像素
bbs_shifted = bbs.shift(left=25)
bbs_shifted.bounding_boxes[1] = bbs_shifted.bounding_boxes[1].shift(top=25)

# 画包围框移动前后的图
image = bbs.draw_on_image(image, color=[0, 255, 0], size=2, alpha=0.75)
image = bbs_shifted.draw_on_image(image, color=[0, 0, 255], size=2, alpha=0.75)

 imgaug的使用(二)_第3张图片

绿色是原始框,蓝色是移动后的

4、缩放

import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage


ia.seed(1)

# 定义图像和俩框
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
    BoundingBox(x1=25, x2=75, y1=25, y2=75),
    BoundingBox(x1=100, x2=150, y1=25, y2=75)
], shape=image.shape)

# 缩放图像和俩框
image_rescaled = ia.imresize_single_image(image, (512, 512))
bbs_rescaled = bbs.on(image_rescaled)

# 画缩放前后的图
image_bbs = bbs.draw_on_image(image, size=2)
image_rescaled_bbs = bbs_rescaled.draw_on_image(image_rescaled, size=2)

 imgaug的使用(二)_第4张图片

5、计算IoU

import numpy as np
import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox


ia.seed(1)

# 定义图像和包围框
image = ia.quokka(size=(256, 256))
bb1 = BoundingBox(x1=50, x2=100, y1=25, y2=75)
bb2 = BoundingBox(x1=75, x2=125, y1=50, y2=100)

# 计算交、并集和IoU
# 交集和并集都是边界框。它们在这里减小/增大尺寸纯粹是为了更好的可视化。
bb_inters = bb1.intersection(bb2).extend(all_sides=-1)
bb_union = bb1.union(bb2).extend(all_sides=2)
iou = bb1.iou(bb2)

# 画包围框,交集、并集、IoU.
image_bbs = np.copy(image)
image_bbs = bb1.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb2.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb_inters.draw_on_image(image_bbs, size=2, color=[255, 0, 0])
image_bbs = bb_union.draw_on_image(image_bbs, size=2, color=[0, 0, 255])
image_bbs = ia.draw_text(
    image_bbs, text="IoU=%.2f" % (iou,),
    x=bb_union.x2+10, y=bb_union.y1+bb_union.height//2,
    color=[255, 255, 255], size=13
)

 imgaug的使用(二)_第5张图片

 

 

 

你可能感兴趣的:(imgaug的使用(二))