redis.conf详解

# redis 配置文件示例  
   
# 当你需要为某个配置项指定内存大小的时候,必须要带上单位,  
# 通常的格式就是 1k 5gb 4m 等酱紫:  
#  
# 1k  => 1000 bytes  
# 1kb => 1024 bytes  
# 1m  => 1000000 bytes  
# 1mb => 1024*1024 bytes  
# 1g  => 1000000000 bytes  
# 1gb => 1024*1024*1024 bytes  
#  
# 单位是不区分大小写的,你写 1K 5GB 4M 也行  
   
################################## INCLUDES ###################################  
   
# 假如说你有一个可用于所有的 redis server 的标准配置模板,  
# 但针对某些 server 又需要一些个性化的设置,  
# 你可以使用 include 来包含一些其他的配置文件,这对你来说是非常有用的。  
#  
# 但是要注意哦,include 是不能被 config rewrite 命令改写的  
# 由于 redis 总是以最后的加工线作为一个配置指令值,所以你最好是把 include 放在这个文件的最前面,  
# 以避免在运行时覆盖配置的改变,相反,你就把它放在后面(外国人真啰嗦)。  
#  
# include /path/to/local.conf  
# include /path/to/other.conf  
   
################################ 常用 #####################################  
   
# 默认情况下 redis 不是作为守护进程运行的,如果你想让它在后台运行,你就把它改成 yes。  
# 当redis作为守护进程运行的时候,它会写一个 pid 到 /var/run/redis.pid 文件里面。  
daemonize no  
   
# 当redis作为守护进程运行的时候,它会把 pid 默认写到 /var/run/redis.pid 文件里面,  
# 但是你可以在这里自己制定它的文件位置。  
pidfile /var/run/redis.pid  
   
# 监听端口号,默认为 6379,如果你设为 0 ,redis 将不在 socket 上监听任何客户端连接。  
port 6379  
   
# TCP 监听的最大容纳数量  
#  
# 在高并发的环境下,你需要把这个值调高以避免客户端连接缓慢的问题。  
# Linux 内核会一声不响的把这个值缩小成 /proc/sys/net/core/somaxconn 对应的值,  
# 所以你要修改这两个值才能达到你的预期。  
tcp-backlog 511  
   
# 默认情况下,redis 在 server 上所有有效的网络接口上监听客户端连接。  
# 你如果只想让它在一个网络接口上监听,那你就绑定一个IP或者多个IP。  
#  
# 示例,多个IP用空格隔开:  
#  
# bind 192.168.1.100 10.0.0.1  
# bind 127.0.0.1  
   
# 指定 unix socket 的路径。  
#  
# unixsocket /tmp/redis.sock  
# unixsocketperm 755  
   
# 指定在一个 client 空闲多少秒之后关闭连接(0 就是不管它)  
timeout 0  
   
# tcp 心跳包。  
#  
# 如果设置为非零,则在与客户端缺乏通讯的时候使用 SO_KEEPALIVE 发送 tcp acks 给客户端。  
# 这个之所有有用,主要由两个原因:  
#  
# 1) 防止死的 peers  
# 2) Take the connection alive from the point of view of network  
#    equipment in the middle.  
#  
# On Linux, the specified value (in seconds) is the period used to send ACKs.  
# Note that to close the connection the double of the time is needed.  
# On other kernels the period depends on the kernel configuration.  
#  
# A reasonable value for this option is 60 seconds.  
# 推荐一个合理的值就是60秒  
tcp-keepalive 0  
   
# 定义日志级别。  
# 可以是下面的这些值:  
# debug (适用于开发或测试阶段)  
# verbose (many rarely useful info, but not a mess like the debug level)  
# notice (适用于生产环境)  
# warning (仅仅一些重要的消息被记录)  
loglevel notice  
   
# 指定日志文件的位置  
logfile ""  
   
# 要想把日志记录到系统日志,就把它改成 yes,  
# 也可以可选择性的更新其他的syslog 参数以达到你的要求  
# syslog-enabled no  
   
# 设置 syslog 的 identity。  
# syslog-ident redis  
   
# 设置 syslog 的 facility,必须是 USER 或者是 LOCAL0-LOCAL7 之间的值。  
# syslog-facility local0  
   
# 设置数据库的数目。  
# 默认数据库是 DB 0,你可以在每个连接上使用 select 命令选择一个不同的数据库,  
# 但是 dbid 必须是一个介于 0 到 databasees - 1 之间的值  
databases 16  
   
################################ 快照 ################################  
#  
# 存 DB 到磁盘:  
#  
#   格式:save <间隔时间(秒)> <写入次数>  
#  
#   根据给定的时间间隔和写入次数将数据保存到磁盘  
#  
#   下面的例子的意思是:  
#   900 秒内如果至少有 1 个 key 的值变化,则保存  
#   300 秒内如果至少有 10 个 key 的值变化,则保存  
#   60 秒内如果至少有 10000 个 key 的值变化,则保存  
#    
#   注意:你可以注释掉所有的 save 行来停用保存功能。  
#   也可以直接一个空字符串来实现停用:  
#   save ""  
   
save 900 1  
save 300 10  
save 60 10000  
   
# 默认情况下,如果 redis 最后一次的后台保存失败,redis 将停止接受写操作,  
# 这样以一种强硬的方式让用户知道数据不能正确的持久化到磁盘,  
# 否则就会没人注意到灾难的发生。  
#  
# 如果后台保存进程重新启动工作了,redis 也将自动的允许写操作。  
#  
# 然而你要是安装了靠谱的监控,你可能不希望 redis 这样做,那你就改成 no 好了。  
stop-writes-on-bgsave-error yes  
   
# 是否在 dump .rdb 数据库的时候使用 LZF 压缩字符串  
# 默认都设为 yes  
# 如果你希望保存子进程节省点 cpu ,你就设置它为 no ,  
# 不过这个数据集可能就会比较大  
rdbcompression yes  
   
# 是否校验rdb文件  
rdbchecksum yes  
   
# 设置 dump 的文件位置  
dbfilename dump.rdb  
   
# 工作目录  
# 例如上面的 dbfilename 只指定了文件名,  
# 但是它会写入到这个目录下。这个配置项一定是个目录,而不能是文件名。  
dir ./  
   
################################# 主从复制 #################################  
   
# 主从复制。使用 slaveof 来让一个 redis 实例成为另一个reids 实例的副本。  
# 注意这个只需要在 slave 上配置。  
#  
# slaveof  
   
# 如果 master 需要密码认证,就在这里设置  
# masterauth  
   
# 当一个 slave 与 master 失去联系,或者复制正在进行的时候,  
# slave 可能会有两种表现:  
#  
# 1) 如果为 yes ,slave 仍然会应答客户端请求,但返回的数据可能是过时,  
#    或者数据可能是空的在第一次同步的时候  
#  
# 2) 如果为 no ,在你执行除了 info he salveof 之外的其他命令时,  
#    slave 都将返回一个 "SYNC with master in progress" 的错误,  
#  
slave-serve-stale-data yes  
   
# 你可以配置一个 slave 实体是否接受写入操作。  
# 通过写入操作来存储一些短暂的数据对于一个 slave 实例来说可能是有用的,  
# 因为相对从 master 重新同步数而言,据数据写入到 slave 会更容易被删除。  
# 但是如果客户端因为一个错误的配置写入,也可能会导致一些问题。  
#  
# 从 redis 2.6 版起,默认 slaves 都是只读的。  
#  
# Note: read only slaves are not designed to be exposed to untrusted clients  
# on the internet. It's just a protection layer against misuse of the instance.  
# Still a read only slave exports by default all the administrative commands  
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve  
# security of read only slaves using 'rename-command' to shadow all the  
# administrative / dangerous commands.  
# 注意:只读的 slaves 没有被设计成在 internet 上暴露给不受信任的客户端。  
# 它仅仅是一个针对误用实例的一个保护层。  
slave-read-only yes  
   
# Slaves 在一个预定义的时间间隔内发送 ping 命令到 server 。  
# 你可以改变这个时间间隔。默认为 10 秒。  
#  
# repl-ping-slave-period 10  
   
# The following option sets the replication timeout for:  
# 设置主从复制过期时间  
#  
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.  
# 2) Master timeout from the point of view of slaves (data, pings).  
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).  
#  
# It is important to make sure that this value is greater than the value  
# specified for repl-ping-slave-period otherwise a timeout will be detected  
# every time there is low traffic between the master and the slave.  
# 这个值一定要比 repl-ping-slave-period 大  
#  
# repl-timeout 60  
   
# Disable TCP_NODELAY on the slave socket after SYNC?  
#  
# If you select "yes" Redis will use a smaller number of TCP packets and  
# less bandwidth to send data to slaves. But this can add a delay for  
# the data to appear on the slave side, up to 40 milliseconds with  
# Linux kernels using a default configuration.  
#  
# If you select "no" the delay for data to appear on the slave side will  
# be reduced but more bandwidth will be used for replication.  
#  
# By default we optimize for low latency, but in very high traffic conditions  
# or when the master and slaves are many hops away, turning this to "yes" may  
# be a good idea.  
repl-disable-tcp-nodelay no  
   
# 设置主从复制容量大小。这个 backlog 是一个用来在 slaves 被断开连接时  
# 存放 slave 数据的 buffer,所以当一个 slave 想要重新连接,通常不希望全部重新同步,  
# 只是部分同步就够了,仅仅传递 slave 在断开连接时丢失的这部分数据。  
#  
# The biggest the replication backlog, the longer the time the slave can be  
# disconnected and later be able to perform a partial resynchronization.  
# 这个值越大,salve 可以断开连接的时间就越长。  
#  
# The backlog is only allocated once there is at least a slave connected.  
#  
# repl-backlog-size 1mb  
   
# After a master has no longer connected slaves for some time, the backlog  
# will be freed. The following option configures the amount of seconds that  
# need to elapse, starting from the time the last slave disconnected, for  
# the backlog buffer to be freed.  
# 在某些时候,master 不再连接 slaves,backlog 将被释放。  
#  
# A value of 0 means to never release the backlog.  
# 如果设置为 0 ,意味着绝不释放 backlog 。  
#  
# repl-backlog-ttl 3600  
   
# 当 master 不能正常工作的时候,Redis Sentinel 会从 slaves 中选出一个新的 master,  
# 这个值越小,就越会被优先选中,但是如果是 0 , 那是意味着这个 slave 不可能被选中。  
#  
# 默认优先级为 100。  
slave-priority 100  
   
# It is possible for a master to stop accepting writes if there are less than  
# N slaves connected, having a lag less or equal than M seconds.  
#  
# The N slaves need to be in "online" state.  
#  
# The lag in seconds, that must be <= the specified value, is calculated from  
# the last ping received from the slave, that is usually sent every second.  
#  
# This option does not GUARANTEES that N replicas will accept the write, but  
# will limit the window of exposure for lost writes in case not enough slaves  
# are available, to the specified number of seconds.  
#  
# For example to require at least 3 slaves with a lag <= 10 seconds use:  
#  
# min-slaves-to-write 3  
# min-slaves-max-lag 10  
#  
# Setting one or the other to 0 disables the feature.  
#  
# By default min-slaves-to-write is set to 0 (feature disabled) and  
# min-slaves-max-lag is set to 10.  
   
################################## 安全 ###################################  
   
# Require clients to issue AUTH before processing any other  
# commands.  This might be useful in environments in which you do not trust  
# others with access to the host running redis-server.  
#  
# This should stay commented out for backward compatibility and because most  
# people do not need auth (e.g. they run their own servers).  
#   
# Warning: since Redis is pretty fast an outside user can try up to  
# 150k passwords per second against a good box. This means that you should  
# use a very strong password otherwise it will be very easy to break.  
#   
# 设置认证密码  
# requirepass foobared  
   
# Command renaming.  
#  
# It is possible to change the name of dangerous commands in a shared  
# environment. For instance the CONFIG command may be renamed into something  
# hard to guess so that it will still be available for internal-use tools  
# but not available for general clients.  
#  
# Example:  
#  
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52  
#  
# It is also possible to completely kill a command by renaming it into  
# an empty string:  
#  
# rename-command CONFIG ""  
#  
# Please note that changing the name of commands that are logged into the  
# AOF file or transmitted to slaves may cause problems.  
   
################################### 限制 ####################################  
   
# Set the max number of connected clients at the same time. By default  
# this limit is set to 10000 clients, however if the Redis server is not  
# able to configure the process file limit to allow for the specified limit  
# the max number of allowed clients is set to the current file limit  
# minus 32 (as Redis reserves a few file descriptors for internal uses).  
#  
# 一旦达到最大限制,redis 将关闭所有的新连接  
# 并发送一个‘max number of clients reached’的错误。  
#  
# maxclients 10000  
   
# 如果你设置了这个值,当缓存的数据容量达到这个值, redis 将根据你选择的  
# eviction 策略来移除一些 keys。  
#  
# 如果 redis 不能根据策略移除 keys ,或者是策略被设置为 ‘noeviction’,  
# redis 将开始响应错误给命令,如 set,lpush 等等,  
# 并继续响应只读的命令,如 get  
#  
# This option is usually useful when using Redis as an LRU cache, or to set  
# a hard memory limit for an instance (using the 'noeviction' policy).  
#  
# WARNING: If you have slaves attached to an instance with maxmemory on,  
# the size of the output buffers needed to feed the slaves are subtracted  
# from the used memory count, so that network problems / resyncs will  
# not trigger a loop where keys are evicted, and in turn the output  
# buffer of slaves is full with DELs of keys evicted triggering the deletion  
# of more keys, and so forth until the database is completely emptied.  
#  
# In short... if you have slaves attached it is suggested that you set a lower  
# limit for maxmemory so that there is some free RAM on the system for slave  
# output buffers (but this is not needed if the policy is 'noeviction').  
#  
# 最大使用内存  
# maxmemory  
   
# 最大内存策略,你有 5 个选择。  
#   
# volatile-lru -> remove the key with an expire set using an LRU algorithm  
# volatile-lru -> 使用 LRU 算法移除包含过期设置的 key 。  
# allkeys-lru -> remove any key accordingly to the LRU algorithm  
# allkeys-lru -> 根据 LRU 算法移除所有的 key 。  
# volatile-random -> remove a random key with an expire set  
# allkeys-random -> remove a random key, any key  
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)  
# noeviction -> don't expire at all, just return an error on write operations  
# noeviction -> 不让任何 key 过期,只是给写入操作返回一个错误  
#   
# Note: with any of the above policies, Redis will return an error on write  
#       operations, when there are not suitable keys for eviction.  
#  
#       At the date of writing this commands are: set setnx setex append  
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd  
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby  
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby  
#       getset mset msetnx exec sort  
#  
# The default is:  
#  
# maxmemory-policy noeviction  
   
# LRU and minimal TTL algorithms are not precise algorithms but approximated  
# algorithms (in order to save memory), so you can tune it for speed or  
# accuracy. For default Redis will check five keys and pick the one that was  
# used less recently, you can change the sample size using the following  
# configuration directive.  
#  
# The default of 5 produces good enough results. 10 Approximates very closely  
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.  
#  
# maxmemory-samples 5  
   
############################## APPEND ONLY MODE ###############################  
   
# By default Redis asynchronously dumps the dataset on disk. This mode is  
# good enough in many applications, but an issue with the Redis process or  
# a power outage may result into a few minutes of writes lost (depending on  
# the configured save points).  
#  
# The Append Only File is an alternative persistence mode that provides  
# much better durability. For instance using the default data fsync policy  
# (see later in the config file) Redis can lose just one second of writes in a  
# dramatic event like a server power outage, or a single write if something  
# wrong with the Redis process itself happens, but the operating system is  
# still running correctly.  
#  
# AOF and RDB persistence can be enabled at the same time without problems.  
# If the AOF is enabled on startup Redis will load the AOF, that is the file  
# with the better durability guarantees.  
#  
# Please check http://redis.io/topics/persistence for more information.  
   
appendonly no  
   
# The name of the append only file (default: "appendonly.aof")  
   
appendfilename "appendonly.aof"  
   
# The fsync() call tells the Operating System to actually write data on disk  
# instead to wait for more data in the output buffer. Some OS will really flush   
# data on disk, some other OS will just try to do it ASAP.  
#  
# Redis supports three different modes:  
#  
# no: don't fsync, just let the OS flush the data when it wants. Faster.  
# always: fsync after every write to the append only log . Slow, Safest.  
# everysec: fsync only one time every second. Compromise.  
#  
# The default is "everysec", as that's usually the right compromise between  
# speed and data safety. It's up to you to understand if you can relax this to  
# "no" that will let the operating system flush the output buffer when  
# it wants, for better performances (but if you can live with the idea of  
# some data loss consider the default persistence mode that's snapshotting),  
# or on the contrary, use "always" that's very slow but a bit safer than  
# everysec.  
#  
# More details please check the following article:  
# http://antirez.com/post/redis-persistence-demystified.html  
#  
# If unsure, use "everysec".  
   
# appendfsync always  
appendfsync everysec  
# appendfsync no  
   
# When the AOF fsync policy is set to always or everysec, and a background  
# saving process (a background save or AOF log background rewriting) is  
# performing a lot of I/O against the disk, in some Linux configurations  
# Redis may block too long on the fsync() call. Note that there is no fix for  
# this currently, as even performing fsync in a different thread will block  
# our synchronous write(2) call.  
#  
# In order to mitigate this problem it's possible to use the following option  
# that will prevent fsync() from being called in the main process while a  
# BGSAVE or BGREWRITEAOF is in progress.  
#  
# This means that while another child is saving, the durability of Redis is  
# the same as "appendfsync none". In practical terms, this means that it is  
# possible to lose up to 30 seconds of log in the worst scenario (with the  
# default Linux settings).  
#   
# If you have latency problems turn this to "yes". Otherwise leave it as  
# "no" that is the safest pick from the point of view of durability.  
   
no-appendfsync-on-rewrite no  
   
# Automatic rewrite of the append only file.  
# Redis is able to automatically rewrite the log file implicitly calling  
# BGREWRITEAOF when the AOF log size grows by the specified percentage.  
#   
# This is how it works: Redis remembers the size of the AOF file after the  
# latest rewrite (if no rewrite has happened since the restart, the size of  
# the AOF at startup is used).  
#  
# This base size is compared to the current size. If the current size is  
# bigger than the specified percentage, the rewrite is triggered. Also  
# you need to specify a minimal size for the AOF file to be rewritten, this  
# is useful to avoid rewriting the AOF file even if the percentage increase  
# is reached but it is still pretty small.  
#  
# Specify a percentage of zero in order to disable the automatic AOF  
# rewrite feature.  
   
auto-aof-rewrite-percentage 100  
auto-aof-rewrite-min-size 64mb  
   
################################ LUA SCRIPTING  ###############################  
   
# Max execution time of a Lua script in milliseconds.  
#  
# If the maximum execution time is reached Redis will log that a script is  
# still in execution after the maximum allowed time and will start to  
# reply to queries with an error.  
#  
# When a long running script exceed the maximum execution time only the  
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be  
# used to stop a script that did not yet called write commands. The second  
# is the only way to shut down the server in the case a write commands was  
# already issue by the script but the user don't want to wait for the natural  
# termination of the script.  
#  
# Set it to 0 or a negative value for unlimited execution without warnings.  
lua-time-limit 5000  
   
################################ REDIS 集群  ###############################  
#  
# 启用或停用集群  
# cluster-enabled yes  
   
# Every cluster node has a cluster configuration file. This file is not  
# intended to be edited by hand. It is created and updated by Redis nodes.  
# Every Redis Cluster node requires a different cluster configuration file.  
# Make sure that instances running in the same system does not have  
# overlapping cluster configuration file names.  
#  
# cluster-config-file nodes-6379.conf  
   
# Cluster node timeout is the amount of milliseconds a node must be unreachable   
# for it to be considered in failure state.  
# Most other internal time limits are multiple of the node timeout.  
#  
# cluster-node-timeout 15000  
   
# A slave of a failing master will avoid to start a failover if its data  
# looks too old.  
#  
# There is no simple way for a slave to actually have a exact measure of  
# its "data age", so the following two checks are performed:  
#  
# 1) If there are multiple slaves able to failover, they exchange messages  
#    in order to try to give an advantage to the slave with the best  
#    replication offset (more data from the master processed).  
#    Slaves will try to get their rank by offset, and apply to the start  
#    of the failover a delay proportional to their rank.  
#  
# 2) Every single slave computes the time of the last interaction with  
#    its master. This can be the last ping or command received (if the master  
#    is still in the "connected" state), or the time that elapsed since the  
#    disconnection with the master (if the replication link is currently down).  
#    If the last interaction is too old, the slave will not try to failover  
#    at all.  
#  
# The point "2" can be tuned by user. Specifically a slave will not perform  
# the failover if, since the last interaction with the master, the time  
# elapsed is greater than:  
#  
#   (node-timeout * slave-validity-factor) + repl-ping-slave-period  
#  
# So for example if node-timeout is 30 seconds, and the slave-validity-factor  
# is 10, and assuming a default repl-ping-slave-period of 10 seconds, the  
# slave will not try to failover if it was not able to talk with the master  
# for longer than 310 seconds.  
#  
# A large slave-validity-factor may allow slaves with too old data to failover  
# a master, while a too small value may prevent the cluster from being able to  
# elect a slave at all.  
#  
# For maximum availability, it is possible to set the slave-validity-factor  
# to a value of 0, which means, that slaves will always try to failover the  
# master regardless of the last time they interacted with the master.  
# (However they'll always try to apply a delay proportional to their  
# offset rank).  
#  
# Zero is the only value able to guarantee that when all the partitions heal  
# the cluster will always be able to continue.  
#  
# cluster-slave-validity-factor 10  
   
# Cluster slaves are able to migrate to orphaned masters, that are masters  
# that are left without working slaves. This improves the cluster ability  
# to resist to failures as otherwise an orphaned master can't be failed over  
# in case of failure if it has no working slaves.  
#  
# Slaves migrate to orphaned masters only if there are still at least a  
# given number of other working slaves for their old master. This number  
# is the "migration barrier". A migration barrier of 1 means that a slave  
# will migrate only if there is at least 1 other working slave for its master  
# and so forth. It usually reflects the number of slaves you want for every  
# master in your cluster.  
#  
# Default is 1 (slaves migrate only if their masters remain with at least  
# one slave). To disable migration just set it to a very large value.  
# A value of 0 can be set but is useful only for debugging and dangerous  
# in production.  
#  
# cluster-migration-barrier 1  
   
# In order to setup your cluster make sure to read the documentation  
# available at http://redis.io web site.  
   
################################## SLOW LOG ###################################  
   
# The Redis Slow Log is a system to log queries that exceeded a specified  
# execution time. The execution time does not include the I/O operations  
# like talking with the client, sending the reply and so forth,  
# but just the time needed to actually execute the command (this is the only  
# stage of command execution where the thread is blocked and can not serve  
# other requests in the meantime).  
#   
# You can configure the slow log with two parameters: one tells Redis  
# what is the execution time, in microseconds, to exceed in order for the  
# command to get logged, and the other parameter is the length of the  
# slow log. When a new command is logged the oldest one is removed from the  
# queue of logged commands.  
   
# The following time is expressed in microseconds, so 1000000 is equivalent  
# to one second. Note that a negative number disables the slow log, while  
# a value of zero forces the logging of every command.  
slowlog-log-slower-than 10000  
   
# There is no limit to this length. Just be aware that it will consume memory.  
# You can reclaim memory used by the slow log with SLOWLOG RESET.  
slowlog-max-len 128  
   
############################# Event notification ##############################  
   
# Redis can notify Pub/Sub clients about events happening in the key space.  
# This feature is documented at http://redis.io/topics/keyspace-events  
#   
# For instance if keyspace events notification is enabled, and a client  
# performs a DEL operation on key "foo" stored in the Database 0, two  
# messages will be published via Pub/Sub:  
#  
# PUBLISH __keyspace@0__:foo del  
# PUBLISH __keyevent@0__:del foo  
#  
# It is possible to select the events that Redis will notify among a set  
# of classes. Every class is identified by a single character:  
#  
#  K     Keyspace events, published with __keyspace@__ prefix.  
#  E     Keyevent events, published with __keyevent@__ prefix.  
#  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...  
#  $     String commands  
#  l     List commands  
#  s     Set commands  
#  h     Hash commands  
#  z     Sorted set commands  
#  x     Expired events (events generated every time a key expires)  
#  e     Evicted events (events generated when a key is evicted for maxmemory)  
#  A     Alias for g$lshzxe, so that the "AKE" string means all the events.  
#  
#  The "notify-keyspace-events" takes as argument a string that is composed  
#  by zero or multiple characters. The empty string means that notifications  
#  are disabled at all.  
#  
#  Example: to enable list and generic events, from the point of view of the  
#           event name, use:  
#  
#  notify-keyspace-events Elg  
#  
#  Example 2: to get the stream of the expired keys subscribing to channel  
#             name __keyevent@0__:expired use:  
#  
#  notify-keyspace-events Ex  
#  
#  By default all notifications are disabled because most users don't need  
#  this feature and the feature has some overhead. Note that if you don't  
#  specify at least one of K or E, no events will be delivered.  
notify-keyspace-events ""  
   
############################### ADVANCED CONFIG ###############################  
   
# Hashes are encoded using a memory efficient data structure when they have a  
# small number of entries, and the biggest entry does not exceed a given  
# threshold. These thresholds can be configured using the following directives.  
hash-max-ziplist-entries 512  
hash-max-ziplist-value 64  
   
# Similarly to hashes, small lists are also encoded in a special way in order  
# to save a lot of space. The special representation is only used when  
# you are under the following limits:  
list-max-ziplist-entries 512  
list-max-ziplist-value 64  
   
# Sets have a special encoding in just one case: when a set is composed  
# of just strings that happens to be integers in radix 10 in the range  
# of 64 bit signed integers.  
# The following configuration setting sets the limit in the size of the  
# set in order to use this special memory saving encoding.  
set-max-intset-entries 512  
   
# Similarly to hashes and lists, sorted sets are also specially encoded in  
# order to save a lot of space. This encoding is only used when the length and  
# elements of a sorted set are below the following limits:  
zset-max-ziplist-entries 128  
zset-max-ziplist-value 64  
   
# HyperLogLog sparse representation bytes limit. The limit includes the  
# 16 bytes header. When an HyperLogLog using the sparse representation crosses  
# this limit, it is converted into the dense representation.  
#  
# A value greater than 16000 is totally useless, since at that point the  
# dense representation is more memory efficient.  
#   
# The suggested value is ~ 3000 in order to have the benefits of  
# the space efficient encoding without slowing down too much PFADD,  
# which is O(N) with the sparse encoding. The value can be raised to  
# ~ 10000 when CPU is not a concern, but space is, and the data set is  
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.  
hll-sparse-max-bytes 3000  
   
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in  
# order to help rehashing the main Redis hash table (the one mapping top-level  
# keys to values). The hash table implementation Redis uses (see dict.c)  
# performs a lazy rehashing: the more operation you run into a hash table  
# that is rehashing, the more rehashing "steps" are performed, so if the  
# server is idle the rehashing is never complete and some more memory is used  
# by the hash table.  
#   
# The default is to use this millisecond 10 times every second in order to  
# active rehashing the main dictionaries, freeing memory when possible.  
#  
# If unsure:  
# use "activerehashing no" if you have hard latency requirements and it is  
# not a good thing in your environment that Redis can reply form time to time  
# to queries with 2 milliseconds delay.  
#  
# use "activerehashing yes" if you don't have such hard requirements but  
# want to free memory asap when possible.  
activerehashing yes  
   
# The client output buffer limits can be used to force disconnection of clients  
# that are not reading data from the server fast enough for some reason (a  
# common reason is that a Pub/Sub client can't consume messages as fast as the  
# publisher can produce them).  
#  
# The limit can be set differently for the three different classes of clients:  
#  
# normal -> normal clients  
# slave  -> slave clients and MONITOR clients  
# pubsub -> clients subscribed to at least one pubsub channel or pattern  
#  
# The syntax of every client-output-buffer-limit directive is the following:  
#  
# client-output-buffer-limit  
#  
# A client is immediately disconnected once the hard limit is reached, or if  
# the soft limit is reached and remains reached for the specified number of  
# seconds (continuously).  
# So for instance if the hard limit is 32 megabytes and the soft limit is  
# 16 megabytes / 10 seconds, the client will get disconnected immediately  
# if the size of the output buffers reach 32 megabytes, but will also get  
# disconnected if the client reaches 16 megabytes and continuously overcomes  
# the limit for 10 seconds.  
#  
# By default normal clients are not limited because they don't receive data  
# without asking (in a push way), but just after a request, so only  
# asynchronous clients may create a scenario where data is requested faster  
# than it can read.  
#  
# Instead there is a default limit for pubsub and slave clients, since  
# subscribers and slaves receive data in a push fashion.  
#  
# Both the hard or the soft limit can be disabled by setting them to zero.  
client-output-buffer-limit normal 0 0 0  
client-output-buffer-limit slave 256mb 64mb 60  
client-output-buffer-limit pubsub 32mb 8mb 60  
   
# Redis calls an internal function to perform many background tasks, like  
# closing connections of clients in timeout, purging expired keys that are  
# never requested, and so forth.  
#  
# Not all tasks are performed with the same frequency, but Redis checks for  
# tasks to perform accordingly to the specified "hz" value.  
#  
# By default "hz" is set to 10. Raising the value will use more CPU when  
# Redis is idle, but at the same time will make Redis more responsive when  
# there are many keys expiring at the same time, and timeouts may be  
# handled with more precision.  
#  
# The range is between 1 and 500, however a value over 100 is usually not  
# a good idea. Most users should use the default of 10 and raise this up to  
# 100 only in environments where very low latency is required.  
hz 10  
   
# When a child rewrites the AOF file, if the following option is enabled  
# the file will be fsync-ed every 32 MB of data generated. This is useful  
# in order to commit the file to the disk more incrementally and avoid  
# big latency spikes.  

aof-rewrite-incremental-fsync yes

   大家可以了解了解。。。


你可能感兴趣的:(JAVA项目)