keras-YOLOv3检测中遇到的问题!(检测视频时效果不好的坑)

1.YOLOv3对图片的检测:

下面是一个可以批量检测图片的代码,只需修改一下图片路径。最终会将检测结果保存在你设置image_save_path路径下。

# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""

import colorsys
import os
from timeit import default_timer as timer
import time

import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
from keras.utils import multi_gpu_model

path = './test/'  #待检测图片的位置

#创建创建一个存储检测结果的dir
result_path = './result'
if not os.path.exists(result_path):
    os.makedirs(result_path)

#result如果之前存放的有文件,全部清除
for i in os.listdir(result_path):
    path_file = os.path.join(result_path,i)  
    if os.path.isfile(path_file):
        os.remove(path_file)

#创建一个记录检测结果的文件
txt_path =result_path + '/result.txt'
file = open(txt_path,'w')  

class YOLO(object):
    _defaults = {
        "model_path": 'model_data/trained_weights_stage_1.h5',
        "anchors_path": 'model_data/tiny_yolo_anchors.txt',
        "classes_path": 'model_data/voc_classes.txt',
        "score" : 0.3,
        "iou" : 0.45,
        "model_image_size" : (416, 416),
        "gpu_num" : 1,
    }

@classmethod
def get_defaults(cls, n):
    if n in cls._defaults:
        return cls._defaults[n]
    else:
        return "Unrecognized attribute name '" + n + "'"

def __init__(self, **kwargs):
    self.__dict__.update(self._defaults) # set up default values
    self.__dict__.update(kwargs) # and update with user overrides
    self.class_names = self._get_class()
    self.anchors = self._get_anchors()
    self.sess = K.get_session()
    self.boxes, self.scores, self.classes = self.generate()

def _get_class(self):
    classes_path = os.path.expanduser(self.classes_path)
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

def _get_anchors(self):
    anchors_path = os.path.expanduser(self.anchors_path)
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape(-1, 2)

def generate(self):
    model_path = os.path.expanduser(self.model_path)
    assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

    # Load model, or construct model and load weights.
    num_anchors = len(self.anchors)
    num_classes = len(self.class_names)
    is_tiny_version = num_anchors==6 # default setting
    try:
        self.yolo_model = load_model(model_path, compile=False)
    except:
        self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
            if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
        self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
    else:
        assert self.yolo_model.layers[-1].output_shape[-1] == \
            num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
            'Mismatch between model and given anchor and class sizes'

    print('{} model, anchors, and classes loaded.'.format(model_path))

    # Generate colors for drawing bounding boxes.
    hsv_tuples = [(x / len(self.class_names), 1., 1.)
                  for x in range(len(self.class_names))]
    self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    self.colors = list(
        map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
            self.colors))
    np.random.seed(10101)  # Fixed seed for consistent colors across runs.
    np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
    np.random.seed(None)  # Reset seed to default.

    # Generate output tensor targets for filtered bounding boxes.
    self.input_image_shape = K.placeholder(shape=(2, ))
    if self.gpu_num>=2:
        self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
    boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
            len(self.class_names), self.input_image_shape,
            score_threshold=self.score, iou_threshold=self.iou)
    return boxes, scores, classes

def detect_image(self, image):
    start = timer() # 开始计时

    if self.model_image_size != (None, None):
        assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
        assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
        boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
    else:
        new_image_size = (image.width - (image.width % 32),
                          image.height - (image.height % 32))
        boxed_image = letterbox_image(image, new_image_size)
    image_data = np.array(boxed_image, dtype='float32')

    print(image_data.shape) #打印图片的尺寸
    image_data /= 255.
    image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

    out_boxes, out_scores, out_classes = self.sess.run(
        [self.boxes, self.scores, self.classes],
        feed_dict={
            self.yolo_model.input: image_data,
            self.input_image_shape: [image.size[1], image.size[0]],
            K.learning_phase(): 0
        })

    print('Found {} boxes for {}'.format(len(out_boxes), 'img')) # 提示用于找到几个bbox

    font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                size=np.floor(2e-2 * image.size[1] + 0.2).astype('int32'))
    thickness = (image.size[0] + image.size[1]) // 500

    # 保存框检测出的框的个数
    file.write('find  '+str(len(out_boxes))+' target(s) \n')

    for i, c in reversed(list(enumerate(out_classes))):
        predicted_class = self.class_names[c]
        box = out_boxes[i]
        score = out_scores[i]

        label = '{} {:.2f}'.format(predicted_class, score)
        draw = ImageDraw.Draw(image)
        label_size = draw.textsize(label, font)

        top, left, bottom, right = box
        top = max(0, np.floor(top + 0.5).astype('int32'))
        left = max(0, np.floor(left + 0.5).astype('int32'))
        bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
        right = min(image.size[0], np.floor(right + 0.5).astype('int32'))

        # 写入检测位置            
        file.write(predicted_class+'  score: '+str(score)+' \nlocation: top: '+str(top)+'、 bottom: '+str(bottom)+'、 left: '+str(left)+'、 right: '+str(right)+'\n')
        
        print(label, (left, top), (right, bottom))

        if top - label_size[1] >= 0:
            text_origin = np.array([left, top - label_size[1]])
        else:
            text_origin = np.array([left, top + 1])

        # My kingdom for a good redistributable image drawing library.
        for i in range(thickness):
            draw.rectangle(
                [left + i, top + i, right - i, bottom - i],
                outline=self.colors[c])
        draw.rectangle(
            [tuple(text_origin), tuple(text_origin + label_size)],
            fill=self.colors[c])
        draw.text(text_origin, label, fill=(0, 0, 0), font=font)
        del draw

    end = timer()
    print('time consume:%.3f s '%(end - start))
    return image

def close_session(self):
    self.sess.close()


#图片检测
if __name__ == '__main__':

t1 = time.time()
yolo = YOLO()   

path_list = os.listdir(path)
for filename in path_list:        
    image_path = path+'/'+filename
    portion = os.path.split(image_path)

    file.write(portion[1]+' detect_result:\n')
    
    image = Image.open(image_path)
    r_image = yolo.detect_image(image)
    file.write('\n')
    #r_image.show() 显示检测结果

    image_save_path = './result/result_'+portion[1]
    
    print('detect result save to....:'+image_save_path)
    r_image.save(image_save_path)

time_sum = time.time() - t1
file.write('time sum: '+str(time_sum)+'s') 
print('time sum:',time_sum)
file.close() 
yolo.close_session()

这是一个检测单张图片的代码。

def detect_img_for_test():
    yolo = YOLO()
    image = Image.open('004.jpg') #图片的路劲,在根目录下 可直接键入图片名称
    r_image = yolo.detect_image(image)
    yolo.close_session()
    r_image.show()
if __name__ == '__main__':
    detect_img_for_test()

2.YOLOv3对视频的检测:

对视频的检测只需在原码自带的yolo_video.py文件中将路径换成自己的视频路径即可:

   #在源码中你会找到如下代码,修改路径即可。
    parser.add_argument(
        "--input", nargs='?', type=str,required=False,default='192.168.0.5.avi',
        help = "Video input path"
    )

重点来了!!
我们自己训练或借用别人训练好的模型在检测图片的时候,效果会很好。但是在检测视频的时效果很差。作者在仔细阅读代码后,发现在使用yolo_video.py检测视频的时候,步骤是:截帧-检测(类似图片检测)-拼接帧。问题来了,将每个步骤的结果输出,你会发现虽然最后的输出结果没有变化,但是在截帧之后的图片和原图是不一样的(编码格式造成的)。所以导致我们的检测效果不好。
调用vid.read()获取的帧,是BGR的格式,我们只需将其转换成RGB进行检测,在输出的时候在转回BGR拼接即可。

def detect_video(yolo, video_path, output_path="./result"):
    import cv2
    vid = cv2.VideoCapture(video_path)
    if not vid.isOpened():
        raise IOError("Couldn't open webcam or video")
    video_FourCC    = int(vid.get(cv2.CAP_PROP_FOURCC))
    video_fps       = vid.get(cv2.CAP_PROP_FPS)
    video_size      = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
                        int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != "" else False
    if isOutput:
        print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
        out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()
    while True:
        return_value, frame = vid.read()
        #cv2.imwrite("image.jpg", frame)
        #image.show()
        #------------------
        image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))  #!!!!!!!!!
        image = yolo.detect_image(image)
        #----------------------------------
        #result = np.asarray(image)
         #----------------------------------
        result = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)  #!!!!!!!!!!
         #----------------------------------
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS: " + str(curr_fps)
            curr_fps = 0
        cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=0.50, color=(255, 0, 0), thickness=2)
        cv2.namedWindow("result", cv2.WINDOW_NORMAL)
        cv2.imshow("result", result)
        if isOutput:
            out.write(result)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    yolo.close_session()

你可能感兴趣的:(keras-YOLOv3检测中遇到的问题!(检测视频时效果不好的坑))