- 让你的 AI 更聪明,这 7 个开源 MCP 项目不要错过
霍格沃兹测试开发学社
人工智能人工智能测试用例开发语言selenium驱动开发开源python
你还在用AI只是写写文档、改改代码?那你真的小看它了。现在,通过一套叫MCP(ModelControlPlane)的系统,AI不再只是“语言模型”,而是能直接操作网页、调用工具、自动化执行复杂任务的“智能助手”!今天整理了7个超实用的开源MCP项目,让你的AI立刻“开挂”。01|PagePublisherMCP:HTML页面一键上线还在发愁怎么把AI生成的HTML页部署上线?PagePublish
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 展锐平台(Android15)WLAN热点名称修改不生效问题分析
前言在展锐AndroidV项目开发中,需要修改softAp/P2P热点名称时,发现集成GMS后直接修改framework层代码无效。具体表现为:修改packages/modules/Wifi/WifiApConfigStore中的getDefaultApConfiguration方法编译烧录后修改不生效问题根源在于:Wi-Fi模块在AndroidS(12)及以上版本已纳入Mainline模块Mai
- 从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南
从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南一、项目概述大家好!今天给大家带来一个干货满满的实战项目——基于ESP32S3硬件和Python后端的智能语音助手系统。这个项目将物联网技术与AI技术完美结合,打造一个可以实时对话、意图识别的智能语音交互系统。相比传统的离线语音系统只能识别固定命令词,我们这套系统可以:实现自然语言理解,支持多种表达方式无需预设固定命令词,更
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 心理健康语音分析AI模型:开启心理评估新时代
AI大模型应用实战
人工智能语音识别ai
心理健康语音分析AI模型:开启心理评估新时代关键词:心理健康评估、语音信号处理、情感计算、AI模型、多模态融合摘要:传统心理评估依赖量表问卷和人工观察,存在主观性强、效率低、难以实时监测等局限。本文将带您走进“心理健康语音分析AI模型”的世界,从基础概念到核心技术,从算法原理到实战案例,揭秘AI如何通过“听声音”读懂心理状态,开启心理评估的智能化新时代。背景介绍目的和范围心理健康问题已成为全球公共
- mac安装docker
段帅星
PC使用问题macosdocker
1、下载docker-desktophttps://www.docker.com/products/docker-desktop/2、安装,双击安装3、优化docker配置默认配置cat~/Library/Group\Containers/group.com.docker/settings-store.json{"AutoStart":false,"DockerAppLaunchPath":"/A
- 【AI大模型】PyTorch Lightning 简化工具
我爱一条柴ya
学习AI记录人工智能pytorchpythonaiAI编程
PyTorchLightning是一个轻量级的PyTorch封装库,它通过抽象训练循环的工程细节,让研究人员可以专注于模型设计和实验。以下是PyTorchLightning的核心概念和实战指南。核心优势基础使用:三步搭建训练流程1.定义LightningModuleimporttorchimporttorch.nnasnnimportpytorch_lightningasplfromtorchme
- 【AI大模型】Transformer架构位置编码
我爱一条柴ya
学习AI记录人工智能神经网络aiAI编程
Transformer架构中的位置编码(PositionalEncoding)是其核心设计之一,用于解决一个关键问题:Self-Attention机制本身对输入元素的顺序是“无感知”的(permutationinvariant)。问题:为什么需要位置编码?Self-Attention的本质缺陷:Self-Attention通过计算所有元素对之间的关联来工作。然而,它只关心元素是什么(x_i的内容)
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- 毫秒级断电+AI预警:广州曼顿智能空开如何重新定义电气安全?
mdkk678
人工智能安全
在智慧城市、工业4.0与“双碳”目标的推动下,电力系统正经历从传统被动响应向主动智能防控的深刻变革。广州曼顿科技推出的智能空气开关,凭借毫秒级断电技术与AI预警系统的深度融合,不仅填补了传统断路器在响应速度、故障预判和能效管理上的技术空白,更以“零时差守护”理念重塑了电气安全的新范式。一、技术突破:毫秒级断电的“物理屏障”传统断路器依赖机械结构实现过载保护,其响应时间通常在数十毫秒以上,难以应对瞬
- 【车载测试之CAPL编程系列】:【16】函数定义(2)
车载测试CAPL编程系列:CAPL中的函数定义(2)目录函数定义的基本形式参数类型与返回值函数重载(Overload)返回值限制:不能返回数组AI总结函数定义的基本形式CAPL函数定义具有灵活性,可根据需求设计无返回值、无参数的函数。无返回值、无参数的函数返回值类型:若函数无返回值,可声明为void,且void关键字可省略(CAPL特性,区别于C语言)。参数:允许无参数,但必须保留空括号()。示例
- AI+区块链:代购系统如何破解碳足迹追踪“数据黑箱”?
绿色电商趋势:代购系统如何实现碳足迹追踪与可持续物流?在全球气候危机与可持续发展目标的双重驱动下,绿色电商正从概念走向实践。作为跨境电商的核心环节,代购系统如何通过技术创新实现碳足迹追踪与可持续物流,成为行业突破增长瓶颈、构建差异化竞争力的关键。本文结合技术架构、行业实践与未来趋势,解析代购系统在绿色转型中的路径选择。一、碳足迹追踪:从数据孤岛到全链路透明1.技术架构:区块链+IoT构建可信数据链
- ECR仓库CloudFormation模板完整指南
ivwdcwso
运维与云原生自动化aws运维ECRCloudFormation镜像容器
概述本文档详细介绍了一个通用的AmazonECR(ElasticContainerRegistry)仓库CloudFormation模板,该模板支持多业务组、参数化配置,并包含完整的安全策略、生命周期管理和监控功能。模板特性核心功能✅支持4个业务组:app、ai、mall、frontend✅灵活的服务名手动输入✅多环境支持(dev/test/staging/prod)✅自动镜像扫描和安全检查✅生命
- [晕事]今天做了件晕事83: pen test
mzhan017
英语学习笔记晕事英语学习
这个缩写,就不能顾名思义了,而且pen是一个独立的单词,从读音上来说还容易和pain混淆,所以导致初接触者有些困扰。所以这个pentest的缩写,有些失败。全写是penetrationtest:渗透测试。https://en.wikipedia.org/wiki/Penetration_test修改建议是改成penetest,至少可以和pen在书写上区分,在读音是也可以区分,就读“排你test”。
- 多模态大模型发展全景:从架构创新到应用突破
陈敬雷-充电了么-CEO兼CTO
python大模型多模态大模型AIGC机器学习深度学习DeepSeek
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】《GPT多模态大模型与AIAgent智能体》新出书籍配套视频【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录GPT多模态大模型系列四多模态大模型发展全景:从架构创新到应用突破更多技术内容总结GPT多模态大模型系列四多模态大模型
- 李彦宏的求真务实:AI领域的生死局,信心从何而来?
文|大力财经据自媒体『划重点』独家报道,李彦宏在季度高管会上,来了一场《求真务实》的内部演讲,还把原文向全员公开,这实在可罕。“不是所有的game百度都能去玩、都能赢,所以要搞清楚该干什么、不该干什么。”李彦宏这话,算是把“求真务实”给点透了。他还直接开炮:“百度为什么打不赢仗?为什么起大早赶晚集?因为我们不聚焦。”他要求百度高管得敢于批评和自我批评,要开诚布公,知道自己几斤几两,还得能指出队友的
- Python异步编程终极指南:用协程与事件循环重构你的高并发系统
title:Python异步编程终极指南:用协程与事件循环重构你的高并发系统date:2025/2/24updated:2025/2/24author:cmdragonexcerpt:深入剖析Python异步编程的核心机制。你将掌握:\n事件循环的底层实现原理与调度算法\nasync/await协程的6种高级用法模式\n异步HTTP请求的性能优化技巧(速度提升15倍+)\n常见异步陷阱的26种解决
- python 异步编程:协程与 asyncio
花_城
Python开发语言后端异步协程
文章目录一、协程(coroutine)1.1协程的概念1.2实现协程的方式二、asyncio异步编程2.1事件循环2.2快速上手2.3运行协程2.4await关键字2.5可等待对象2.5.1协程2.5.2任务(Task)2.5.3asyncio.Future三、concurrent.futures.Future(补充)3.1爬虫案例(asyncio+不支持异步的模块)四、asyncio异步迭代器五
- 一文搞懂 Cursor 内部工作原理~
zz_jesse
介绍了Cursor,一个结合了AI技术的代码编辑器,它通过深度学习和语义索引的方式,提升了开发者的工作效率。Cursor通过与VSCode相似的界面和功能,以及自己的AI特性,实现了代码的智能化编辑和错误检查。译文从这开始~~你可能已经看到新闻:OpenAI正以高达30亿美元的价格收购Windsurf!与此同时,Cursor的母公司Anysphere也正在以90亿美元估值融资9亿美元!这对于代码生
- 深入解析:v0、Cursor、Manus等AI编程助手的系统提示词、工具与模型
张道宁
人工智能
引言在当今快速发展的AI编程领域,涌现出了许多强大的AI编程助手工具,如v0、Cursor、Manus、Same.dev、Lovable、Devin和ReplitAgent等。这些工具通过智能化的代码生成、补全和优化,正在彻底改变开发者的工作流程。v0:Vercel的AIUI生成器系统提示词设计v0的系统提示词专注于将自然语言描述转换为可用的UI代码(主要是React和TailwindCSS)。其
- MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
nine是个工程师
关注人工智能语言模型开源
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎关注评论私信交流~在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。这个项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型,体积仅为GPT-3的七千分之一,却完整覆盖了从数据处理到模型
- 如何让AI真正理解你的意图(自适应Prompt实战指南)
nine是个工程师
大语言模型人工智能prompt
目前的LLM模型,在理解用户意图方面,正在使用自适应Prompt技术,来提升模型的理解能力。目前使用deepseek推理模型能明显看到自适应的一个过程。前言:为什么你的AI总是"答非所问"?相信很多人都遇到过这样的情况:你问:“帮我写一个Python爬虫”AI答:给你一堆理论知识和完整教程(你只想要简单代码)你问:“推荐一部电影”AI答:推荐了《教父》(你想看轻松喜剧)你问:“解释一下机器学习”A
- 上下文工程:AI 智能体架构落地的关键新技术
一休哥助手
人工智能人工智能架构
摘要随着大语言模型(LLM)驱动的智能体(Agent)逐渐成为下一代人机交互的核心范式,上下文管理已成为决定智能体性能与可靠性的关键瓶颈。本文提出“上下文工程”(ContextEngineering)作为智能体架构落地的核心技术方向,系统阐述其在解决长上下文依赖、多轮交互一致性、动态知识更新等挑战中的核心作用。通过分层架构设计、动态压缩策略与向量化增强技术,上下文工程显著提升智能体的记忆效率与推理
- MCP在AI驱动场景下的三个典型应用(实时数据查询、企业数据整合、自动化工具链)
CATTLECODE
人工智能自动化运维
以下是针对MCP在AI驱动场景下的三个典型应用(实时数据查询、企业数据整合、自动化工具链)的具体Demo实现方案及技术解析,结合真实案例和代码示例说明:️1.实时数据查询:调用气象API返回天气数据场景描述用户通过自然语言提问(如“北京今天天气如何?”),大模型自动调用气象API获取实时数据,无需手动输入或切换界面。Demo实现(基于FastMCP框架)fromfastmcpimportFastM
- 跨机构医疗影像解析的协议协同架构——基于MCP协议的“巴比伦塔困境“突破
百态老人
架构
在医疗影像领域,不同医疗机构间因系统异构性形成的"巴比伦塔困境",本质上是协议标准碎片化与数据语义隔阂的叠加效应。通过融合MCP协议、DICOM标准扩展与新型云架构,协和医院PACS系统与301医院AI模型间的直接解析得以实现。这一技术突破包含以下核心创新层级:一、协议转换层的架构创新1.多协议语义网关基于MCP协议构建的智能协议转换层,实现不同DICOM实现版本的动态适配:
- Cursor这类编程Agent软件的模型架构与工作流程
nine是个工程师
谈谈架构Agent架构
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎评论私信交流。最近在关注和输出一系列AIGC架构。模型架构与工作流程大语言模型(LLM)核心编程Agent的核心是一个强大的大语言模型,负责理解用户意图并生成相应的代码和解决方案。Cursor这类编程Agent通常基于GPT-4或Claude等先进大语言模型构建。这些模型通过海量
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- AI人工智能与机器学习的大数据融合应用
AI智能探索者
人工智能机器学习大数据ai
AI人工智能与机器学习的大数据融合应用关键词:AI人工智能、机器学习、大数据、融合应用、数据挖掘摘要:本文深入探讨了AI人工智能与机器学习在大数据融合应用方面的相关内容。首先介绍了研究的背景、目的、预期读者和文档结构,对核心术语进行了清晰定义。接着阐述了AI、机器学习和大数据的核心概念及相互联系,给出了形象的文本示意图和Mermaid流程图。详细讲解了核心算法原理,并通过Python源代码进行说明
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key