第1章 Pandas基础
import pandas as pd
import numpy as np
import pandas as pd
import numpy as np
查看Pandas版本
pd.__version__
'1.0.3'
pd.__version__
'1.0.3'
一、文件读取与写入
1. 读取
(a)csv格式
df = pd.read_csv('data/table.csv')
df.head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
df=pd.read_csv('data/table.csv')
df
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
5 |
S_1 |
C_2 |
1201 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
6 |
S_1 |
C_2 |
1202 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
7 |
S_1 |
C_2 |
1203 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
8 |
S_1 |
C_2 |
1204 |
F |
street_5 |
162 |
63 |
33.8 |
B |
9 |
S_1 |
C_2 |
1205 |
F |
street_6 |
167 |
63 |
68.4 |
B- |
10 |
S_1 |
C_3 |
1301 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
11 |
S_1 |
C_3 |
1302 |
F |
street_1 |
175 |
57 |
87.7 |
A- |
12 |
S_1 |
C_3 |
1303 |
M |
street_7 |
188 |
82 |
49.7 |
B |
13 |
S_1 |
C_3 |
1304 |
M |
street_2 |
195 |
70 |
85.2 |
A |
14 |
S_1 |
C_3 |
1305 |
F |
street_5 |
187 |
69 |
61.7 |
B- |
15 |
S_2 |
C_1 |
2101 |
M |
street_7 |
174 |
84 |
83.3 |
C |
16 |
S_2 |
C_1 |
2102 |
F |
street_6 |
161 |
61 |
50.6 |
B+ |
17 |
S_2 |
C_1 |
2103 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
18 |
S_2 |
C_1 |
2104 |
F |
street_5 |
159 |
97 |
72.2 |
B+ |
19 |
S_2 |
C_1 |
2105 |
M |
street_4 |
170 |
81 |
34.2 |
A |
20 |
S_2 |
C_2 |
2201 |
M |
street_5 |
193 |
100 |
39.1 |
B |
21 |
S_2 |
C_2 |
2202 |
F |
street_7 |
194 |
77 |
68.5 |
B+ |
22 |
S_2 |
C_2 |
2203 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
23 |
S_2 |
C_2 |
2204 |
M |
street_1 |
175 |
74 |
47.2 |
B- |
24 |
S_2 |
C_2 |
2205 |
F |
street_7 |
183 |
76 |
85.4 |
B |
25 |
S_2 |
C_3 |
2301 |
F |
street_4 |
157 |
78 |
72.3 |
B+ |
26 |
S_2 |
C_3 |
2302 |
M |
street_5 |
171 |
88 |
32.7 |
A |
27 |
S_2 |
C_3 |
2303 |
F |
street_7 |
190 |
99 |
65.9 |
C |
28 |
S_2 |
C_3 |
2304 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
29 |
S_2 |
C_3 |
2305 |
M |
street_4 |
187 |
73 |
48.9 |
B |
30 |
S_2 |
C_4 |
2401 |
F |
street_2 |
192 |
62 |
45.3 |
A |
31 |
S_2 |
C_4 |
2402 |
M |
street_7 |
166 |
82 |
48.7 |
B |
32 |
S_2 |
C_4 |
2403 |
F |
street_6 |
158 |
60 |
59.7 |
B+ |
33 |
S_2 |
C_4 |
2404 |
F |
street_2 |
160 |
84 |
67.7 |
B |
34 |
S_2 |
C_4 |
2405 |
F |
street_6 |
193 |
54 |
47.6 |
B |
(b)txt格式
df_txt = pd.read_table('data/table.txt')
df_txt
|
col1 |
col2 |
col3 |
col4 |
0 |
2 |
a |
1.4 |
apple |
1 |
3 |
b |
3.4 |
banana |
2 |
6 |
c |
2.5 |
orange |
3 |
5 |
d |
3.2 |
lemon |
df_txt=pd.read_table('data/table.txt')
df_txt.head()
|
col1 |
col2 |
col3 |
col4 |
0 |
2 |
a |
1.4 |
apple |
1 |
3 |
b |
3.4 |
banana |
2 |
6 |
c |
2.5 |
orange |
3 |
5 |
d |
3.2 |
lemon |
(c)xls或xlsx格式
df_excel = pd.read_excel('data/table.xlsx')
df_excel.head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
df_excel=pd.read_excel('data/table.xlsx')
df_excel.head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
2. 写入
(a)csv格式
df.to_csv('data/new_table.csv')
df.to_csv('data/new_table.csv')
(b)xls或xlsx格式
df.to_excel('data/new_table2.xlsx', sheet_name='Sheet1')
df.to_excel('data/new_table2.xlsx',sheet_name='Sheet1')
二、基本数据结构
1. Series
(a)创建一个Series
对于一个Series,其中最常用的属性为值(values),索引(index),名字(name),类型(dtype)
s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'],name='这是一个Series',dtype='float64')
s
a 0.302995
b 0.573438
c 0.536086
d 0.513209
e -1.263579
Name: 这是一个Series, dtype: float64
s=pd.Series(np.random.randn(5),index=['a','b','c','d','e'],name='这是一个Series',dtype='float64')
s
a -0.314615
b -1.307312
c 0.721136
d 1.841850
e 0.521665
Name: 这是一个Series, dtype: float64
(b)访问Series属性
s.values
s.values
array([-0.31461451, -1.3073125 , 0.7211358 , 1.84184984, 0.52166547])
s.name
s.name
'这是一个Series'
s.index
s.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
s.dtype
s.dtype
dtype('float64')
(c)取出某一个元素
将在第2章详细讨论索引的应用,这里先大致了解
s['a']
s['b']
-1.3073124966290814
(d)调用方法
s.mean()
0.1324296778903958
Series有相当多的方法可以调用:
print([attr for attr in dir(s) if not attr.startswith('_')])
['T', 'a', 'abs', 'add', 'add_prefix', 'add_suffix', 'agg', 'aggregate', 'align', 'all', 'any', 'append', 'apply', 'argmax', 'argmin', 'argsort', 'array', 'asfreq', 'asof', 'astype', 'at', 'at_time', 'attrs', 'autocorr', 'axes', 'b', 'between', 'between_time', 'bfill', 'bool', 'c', 'clip', 'combine', 'combine_first', 'convert_dtypes', 'copy', 'corr', 'count', 'cov', 'cummax', 'cummin', 'cumprod', 'cumsum', 'd', 'describe', 'diff', 'div', 'divide', 'divmod', 'dot', 'drop', 'drop_duplicates', 'droplevel', 'dropna', 'dtype', 'dtypes', 'duplicated', 'e', 'empty', 'eq', 'equals', 'ewm', 'expanding', 'explode', 'factorize', 'ffill', 'fillna', 'filter', 'first', 'first_valid_index', 'floordiv', 'ge', 'get', 'groupby', 'gt', 'hasnans', 'head', 'hist', 'iat', 'idxmax', 'idxmin', 'iloc', 'index', 'infer_objects', 'interpolate', 'is_monotonic', 'is_monotonic_decreasing', 'is_monotonic_increasing', 'is_unique', 'isin', 'isna', 'isnull', 'item', 'items', 'iteritems', 'keys', 'kurt', 'kurtosis', 'last', 'last_valid_index', 'le', 'loc', 'lt', 'mad', 'map', 'mask', 'max', 'mean', 'median', 'memory_usage', 'min', 'mod', 'mode', 'mul', 'multiply', 'name', 'nbytes', 'ndim', 'ne', 'nlargest', 'notna', 'notnull', 'nsmallest', 'nunique', 'pct_change', 'pipe', 'plot', 'pop', 'pow', 'prod', 'product', 'quantile', 'radd', 'rank', 'ravel', 'rdiv', 'rdivmod', 'reindex', 'reindex_like', 'rename', 'rename_axis', 'reorder_levels', 'repeat', 'replace', 'resample', 'reset_index', 'rfloordiv', 'rmod', 'rmul', 'rolling', 'round', 'rpow', 'rsub', 'rtruediv', 'sample', 'searchsorted', 'sem', 'set_axis', 'shape', 'shift', 'size', 'skew', 'slice_shift', 'sort_index', 'sort_values', 'squeeze', 'std', 'sub', 'subtract', 'sum', 'swapaxes', 'swaplevel', 'tail', 'take', 'to_clipboard', 'to_csv', 'to_dict', 'to_excel', 'to_frame', 'to_hdf', 'to_json', 'to_latex', 'to_list', 'to_markdown', 'to_numpy', 'to_period', 'to_pickle', 'to_sql', 'to_string', 'to_timestamp', 'to_xarray', 'transform', 'transpose', 'truediv', 'truncate', 'tshift', 'tz_convert', 'tz_localize', 'unique', 'unstack', 'update', 'value_counts', 'values', 'var', 'view', 'where', 'xs']
2. DataFrame
(a)创建一个DataFrame
df = pd.DataFrame({'col1':list('abcde'),'col2':range(5,10),'col3':[1.3,2.5,3.6,4.6,5.8]},
index=list('一二三四五'))
df
|
col1 |
col2 |
col3 |
一 |
a |
5 |
1.3 |
二 |
b |
6 |
2.5 |
三 |
c |
7 |
3.6 |
四 |
d |
8 |
4.6 |
五 |
e |
9 |
5.8 |
df=pd.DataFrame({'col1':list('abcde'),'col2':range(5,10),'col3':[1.3,2.5,3.6,4.6,5.8]},index=list('一二三四五'))
df
|
col1 |
col2 |
col3 |
一 |
a |
5 |
1.3 |
二 |
b |
6 |
2.5 |
三 |
c |
7 |
3.6 |
四 |
d |
8 |
4.6 |
五 |
e |
9 |
5.8 |
(b)从DataFrame取出一列为Series
df['col1']
df['col1']
一 a
二 b
三 c
四 d
五 e
Name: col1, dtype: object
type(df)
type(df)
pandas.core.frame.DataFrame
type(df['col1'])
type(df['col1'])
pandas.core.series.Series
(c)修改行或列名
df.rename(index={'一':'one'},columns={'col1':'new_col1'})
df.rename(index={'一':'one'},columns={'col1':'new_col1'})
|
new_col1 |
col2 |
col3 |
one |
a |
5 |
1.3 |
二 |
b |
6 |
2.5 |
三 |
c |
7 |
3.6 |
四 |
d |
8 |
4.6 |
五 |
e |
9 |
5.8 |
(d)调用属性和方法
df.index
df.index
Index(['一', '二', '三', '四', '五'], dtype='object')
df.columns
df.columns
Index(['col1', 'col2', 'col3'], dtype='object')
df.values
df.values
array([['a', 5, 1.3],
['b', 6, 2.5],
['c', 7, 3.6],
['d', 8, 4.6],
['e', 9, 5.8]], dtype=object)
df.shape
df.shape
(5, 3)
df.mean()
df.mean()
col2 7.00
col3 3.56
dtype: float64
(e)索引对齐特性
这是Pandas中非常强大的特性,不理解这一特性有时就会造成一些麻烦
df1=pd.DataFrame({'A':[1,2,3]},index=[1,2,3])
df2=pd.DataFrame({'A':[1,2,3]},index=[1,3,2])
df1-df2
df1 = pd.DataFrame({'A':[1,2,3]},index=[1,2,3])
df2 = pd.DataFrame({'A':[1,2,3]},index=[3,1,2])
df1-df2
(f)列的删除与添加
对于删除而言,可以使用drop函数或del或pop
df.drop(index='五',columns='col1')
|
col2 |
col3 |
一 |
5 |
1.3 |
二 |
6 |
2.5 |
三 |
7 |
3.6 |
四 |
8 |
4.6 |
test=df.drop(index='五')
test.drop(columns='col1')
df.drop(index='五',columns='col1')
test.head()
|
col1 |
col2 |
col3 |
一 |
a |
5 |
1.3 |
二 |
b |
6 |
2.5 |
三 |
c |
7 |
3.6 |
四 |
d |
8 |
4.6 |
五 |
e |
9 |
5.8 |
df['col1']=[1,2,3,4,5]
del df['col1']
df
|
col2 |
col3 |
一 |
5 |
1.3 |
二 |
6 |
2.5 |
三 |
7 |
3.6 |
四 |
8 |
4.6 |
五 |
9 |
5.8 |
pop方法直接在原来的DataFrame上操作,且返回被删除的列,与python中的pop函数类似
df['col1']=[1,2,3,4,5]
df.pop('col1')
一 1
二 2
三 3
四 4
五 5
Name: col1, dtype: int64
df['col1']=[1,2,3,4,5]
df.pop('col1')
一 1
二 2
三 3
四 4
五 5
Name: col1, dtype: int64
df
|
col2 |
col3 |
一 |
5 |
1.3 |
二 |
6 |
2.5 |
三 |
7 |
3.6 |
四 |
8 |
4.6 |
五 |
9 |
5.8 |
可以直接增加新的列,也可以使用assign方法
df1['B']=list('abc')
df1['B']=list('abc')
df1
df1.assign(C=pd.Series(list('def'),index=[1,2,3]))
但assign方法不会对原DataFrame做修改
df1
(g)根据类型选择列
df
|
col2 |
col3 |
一 |
5 |
1.3 |
二 |
6 |
2.5 |
三 |
7 |
3.6 |
四 |
8 |
4.6 |
五 |
9 |
5.8 |
df.select_dtypes(include=['number']).head()
df.select_dtypes(include=['number']).head()
|
col2 |
col3 |
一 |
5 |
1.3 |
二 |
6 |
2.5 |
三 |
7 |
3.6 |
四 |
8 |
4.6 |
五 |
9 |
5.8 |
df.select_dtypes(include=['float']).head()
df.select_dtypes(include=['object']).head()
(h)将Series转换为DataFrame
s = df.mean()
s.name='to_DataFrame'
s
col2 7.00
col3 3.56
Name: to_DataFrame, dtype: float64
s=df.mean()
s.name='to_DataFrame'
s
col2 7.00
col3 3.56
Name: to_DataFrame, dtype: float64
s.to_frame()
col2 7.00
col3 3.56
Name: to_DataFrame, dtype: float64
使用T符号可以转置
s.to_frame().T
s.to_frame().T
|
col2 |
col3 |
to_DataFrame |
7.0 |
3.56 |
三、常用基本函数
从下面开始,包括后面所有章节,我们都会用到这份虚拟的数据集
df = pd.read_csv('data/table.csv')
df=pd.read_csv('data/table.csv')
1. head和tail
df.head()
df.head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
df.tail()
df.tail()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
30 |
S_2 |
C_4 |
2401 |
F |
street_2 |
192 |
62 |
45.3 |
A |
31 |
S_2 |
C_4 |
2402 |
M |
street_7 |
166 |
82 |
48.7 |
B |
32 |
S_2 |
C_4 |
2403 |
F |
street_6 |
158 |
60 |
59.7 |
B+ |
33 |
S_2 |
C_4 |
2404 |
F |
street_2 |
160 |
84 |
67.7 |
B |
34 |
S_2 |
C_4 |
2405 |
F |
street_6 |
193 |
54 |
47.6 |
B |
可以指定n参数显示多少行
df.head(3)
df.head(1)
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
2. unique和nunique
nunique显示有多少个唯一值
df['Physics'].nunique()
df['ID'].nunique()
35
unique显示所有的唯一值
df['Physics'].unique()
df['ID'].unique()
array([1101, 1102, 1103, 1104, 1105, 1201, 1202, 1203, 1204, 1205, 1301,
1302, 1303, 1304, 1305, 2101, 2102, 2103, 2104, 2105, 2201, 2202,
2203, 2204, 2205, 2301, 2302, 2303, 2304, 2305, 2401, 2402, 2403,
2404, 2405], dtype=int64)
3. count和value_counts
count返回非缺失值元素个数
df['Physics'].count()
df['ID'].count()
35
value_counts返回每个元素有多少个
df['Physics'].value_counts()
df['Physics'].value_counts()
B+ 9
B 8
B- 6
A 4
A+ 3
A- 3
C 2
Name: Physics, dtype: int64
4. describe和info
info函数返回有哪些列、有多少非缺失值、每列的类型
df.info()
RangeIndex: 35 entries, 0 to 34
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 School 35 non-null object
1 Class 35 non-null object
2 ID 35 non-null int64
3 Gender 35 non-null object
4 Address 35 non-null object
5 Height 35 non-null int64
6 Weight 35 non-null int64
7 Math 35 non-null float64
8 Physics 35 non-null object
dtypes: float64(1), int64(3), object(5)
memory usage: 2.6+ KB
RangeIndex: 35 entries, 0 to 34
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 School 35 non-null object
1 Class 35 non-null object
2 ID 35 non-null int64
3 Gender 35 non-null object
4 Address 35 non-null object
5 Height 35 non-null int64
6 Weight 35 non-null int64
7 Math 35 non-null float64
8 Physics 35 non-null object
dtypes: float64(1), int64(3), object(5)
memory usage: 2.6+ KB
describe默认统计数值型数据的各个统计量
df.describe()
df.describe()
|
ID |
Height |
Weight |
Math |
count |
35.00000 |
35.000000 |
35.000000 |
35.000000 |
mean |
1803.00000 |
174.142857 |
74.657143 |
61.351429 |
std |
536.87741 |
13.541098 |
12.895377 |
19.915164 |
min |
1101.00000 |
155.000000 |
53.000000 |
31.500000 |
25% |
1204.50000 |
161.000000 |
63.000000 |
47.400000 |
50% |
2103.00000 |
173.000000 |
74.000000 |
61.700000 |
75% |
2301.50000 |
187.500000 |
82.000000 |
77.100000 |
max |
2405.00000 |
195.000000 |
100.000000 |
97.000000 |
可以自行选择分位数
df.describe(percentiles=[.05, .25, .75, .95])
df.describe(percentiles=[.05,0.25,.85])
|
ID |
Height |
Weight |
Math |
count |
35.00000 |
35.000000 |
35.000000 |
35.000000 |
mean |
1803.00000 |
174.142857 |
74.657143 |
61.351429 |
std |
536.87741 |
13.541098 |
12.895377 |
19.915164 |
min |
1101.00000 |
155.000000 |
53.000000 |
31.500000 |
5% |
1102.70000 |
157.000000 |
56.100000 |
32.640000 |
25% |
1204.50000 |
161.000000 |
63.000000 |
47.400000 |
50% |
2103.00000 |
173.000000 |
74.000000 |
61.700000 |
85% |
2304.90000 |
191.800000 |
87.600000 |
85.160000 |
max |
2405.00000 |
195.000000 |
100.000000 |
97.000000 |
对于非数值型也可以用describe函数
df['Physics'].describe()
df['Physics'].describe()
count 35
unique 7
top B+
freq 9
Name: Physics, dtype: object
5. idxmax和nlargest
idxmax函数返回最大值,在某些情况下特别适用,idxmin功能类似
df['Math'].idxmax()
df['Math'].idxmax()
5
nlargest函数返回前几个大的元素值,nsmallest功能类似
df['Math'].nlargest(3)
df['Math'].nlargest(5)
5 97.0
28 95.5
11 87.7
2 87.2
24 85.4
Name: Math, dtype: float64
6. clip和replace
clip和replace是两类替换函数
clip是对超过或者低于某些值的数进行截断
df['Math'].head()
df['Math'].head()
0 34.0
1 32.5
2 87.2
3 80.4
4 84.8
Name: Math, dtype: float64
df['Math'].clip(33,80).head()
df['Math'].clip(33,80).head()
0 34.0
1 32.5
2 87.2
3 80.4
4 84.8
Name: Math, dtype: float64
df['Math'].mad()
df['Math'].clip(33,80).mad()
15.021387755102042
replace是对某些值进行替换
df['Address'].head()
df['Address'].head()
0 street_1
1 street_2
2 street_2
3 street_2
4 street_4
Name: Address, dtype: object
df['Address'].replace(['street_1','street_2'],['one','two']).head()
df['Address'].replace(['street_1','street_2'],['one1','two']).head()
0 one1
1 two
2 two
3 two
4 street_4
Name: Address, dtype: object
通过字典,可以直接在表中修改
df.replace({'Address':{'street_1':'one','street_2':'two'}}).head()
df.replace({'Address':{'street_1':'one','street_2':'two'}}).head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
one |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
two |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
two |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
two |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
7. apply函数
apply是一个自由度很高的函数,在第3章我们还要提到
对于Series,它可以迭代每一列的值操作:
df['Math'].apply(lambda x:str(x)+'!').head()
df['Math'].apply(lambda x:str(x)+'!').head()
0 34.0!?
1 32.5!?
2 87.2!?
3 80.4!?
4 84.8!?
Name: Math, dtype: object
对于DataFrame,它可以迭代每一个列操作:
df.apply(lambda x:x.apply(lambda x:str(x)+'!')).head()
df.apply(lambda x:x.apply(lambda x:str(x)+'!')).head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1! |
C_1! |
1101! |
M! |
street_1! |
173! |
63! |
34.0! |
A+! |
1 |
S_1! |
C_1! |
1102! |
F! |
street_2! |
192! |
73! |
32.5! |
B+! |
2 |
S_1! |
C_1! |
1103! |
M! |
street_2! |
186! |
82! |
87.2! |
B+! |
3 |
S_1! |
C_1! |
1104! |
F! |
street_2! |
167! |
81! |
80.4! |
B-! |
4 |
S_1! |
C_1! |
1105! |
F! |
street_4! |
159! |
64! |
84.8! |
B+! |
四、排序
1. 索引排序
df.set_index('Math').head()
df.set_index('Math').head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Physics |
Math |
|
|
|
|
|
|
|
|
34.0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
A+ |
32.5 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
B+ |
87.2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
B+ |
80.4 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
B- |
84.8 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
B+ |
df.set_index('Math').sort_index().head()
df.set_index('Math').sort_index().head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Physics |
Math |
|
|
|
|
|
|
|
|
31.5 |
S_1 |
C_3 |
1301 |
M |
street_4 |
161 |
68 |
B+ |
32.5 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
B+ |
32.7 |
S_2 |
C_3 |
2302 |
M |
street_5 |
171 |
88 |
A |
33.8 |
S_1 |
C_2 |
1204 |
F |
street_5 |
162 |
63 |
B |
34.0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
A+ |
2. 值排序
df.sort_values(by='Class').head()
df.sort_values(by='Math').head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
10 |
S_1 |
C_3 |
1301 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
26 |
S_2 |
C_3 |
2302 |
M |
street_5 |
171 |
88 |
32.7 |
A |
8 |
S_1 |
C_2 |
1204 |
F |
street_5 |
162 |
63 |
33.8 |
B |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
多个值排序,即先对第一层排,在第一层相同的情况下对第二层排序
df.sort_values(by=['Address','Height']).head()
df.sort_values(by=['Address','Height']).head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
11 |
S_1 |
C_3 |
1302 |
F |
street_1 |
175 |
57 |
87.7 |
A- |
23 |
S_2 |
C_2 |
2204 |
M |
street_1 |
175 |
74 |
47.2 |
B- |
33 |
S_2 |
C_4 |
2404 |
F |
street_2 |
160 |
84 |
67.7 |
B |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
五、问题与练习
1. 问题
【问题一】 Series和DataFrame有哪些常见属性和方法?
【问题二】 value_counts会统计缺失值吗?
【问题三】 与idxmax和nlargest功能相反的是哪两组函数?
【问题四】 在常用函数一节中,由于一些函数的功能比较简单,因此没有列入,现在将它们列在下面,请分别说明它们的用途并尝试使用。
sum/mean/median/mad/min/max/abs/std/var/quantile/cummax/cumsum/cumprod
【问题五】 df.mean(axis=1)是什么意思?它与df.mean()的结果一样吗?第一问提到的函数也有axis参数吗?怎么使用?
2. 练习
【练习一】 现有一份关于美剧《权力的游戏》剧本的数据集,请解决以下问题:
(a)在所有的数据中,一共出现了多少人物?
(b)以单元格计数(即简单把一个单元格视作一句),谁说了最多的话?
(c)以单词计数,谁说了最多的单词?
(a)
df=pd.read_csv('data/Game_of_Thrones_Script.csv')
pd.read_csv('data/Game_of_Thrones_Script.csv').head()
|
Release Date |
Season |
Episode |
Episode Title |
Name |
Sentence |
0 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
waymar royce |
What do you expect? They're savages. One lot s... |
1 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
will |
I've never seen wildlings do a thing like this... |
2 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
waymar royce |
How close did you get? |
3 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
will |
Close as any man would. |
4 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
gared |
We should head back to the wall. |
df['Name'].nunique()
564
(b)
df['Name'].value_counts().nlargest(1)
tyrion lannister 1760
Name: Name, dtype: int64
(c)
df_words=df.assign(Words=df['Sentence'].apply(lambda x:len(x.split())))
df_words.head()
|
Release Date |
Season |
Episode |
Episode Title |
Name |
Sentence |
Words |
0 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
waymar royce |
What do you expect? They're savages. One lot s... |
25 |
1 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
will |
I've never seen wildlings do a thing like this... |
21 |
2 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
waymar royce |
How close did you get? |
5 |
3 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
will |
Close as any man would. |
5 |
4 |
2011/4/17 |
Season 1 |
Episode 1 |
Winter is Coming |
gared |
We should head back to the wall. |
7 |
法一
df_words.groupby('Name')['Words'].sum().sort_values().tail(1)
Name
tyrion lannister 26009
Name: Words, dtype: int64
法二
L_count={}
N_words=list(zip(df_words['Name'],df_words['Words']))
for i in N_words:
if i[0] in L_count:
L_count[i[0]]+=i[1]
else:
L_count[i[0]]=i[1]
max_name=max(L_count.keys(),key=(lambda k:L_count[k]))
print(max_name)
tyrion lannister
法三
L_count={}
N_words=list(zip(df_words['Name'],df_words['Words']))
for i in N_words:
if i[0] in L_count:
L_count[i[0]]+=i[1]
else:
L_count[i[0]]=i[1]
sorted(L_count.items(),key=(lambda k:k[1]),reverse=True)
[('tyrion lannister', 26009),
('cersei lannister', 14442),
('daenerys targaryen', 12358),
('jon snow', 12298),
('jaime lannister', 11735),
('sansa stark', 8135),
('petyr baelish', 7101),
('davos', 6842),
('arya stark', 6448),
('varys', 6397),
('tywin lannister', 5493),
('theon greyjoy', 5054),
('sam', 4574),
('bronn', 4354),
('jorah mormont', 4271),
('brienne', 3923),
('stannis baratheon', 3674),
('robb stark', 3625),
('olenna tyrell', 3320),
('catelyn stark', 3303),
('bran stark', 3296),
('melisandre', 3283),
('eddard stark', 3241),
('ramsay bolton', 3229),
('margaery tyrell', 3155),
('joffrey lannister', 3024),
('sandor clegane', 2760),
('sparrow', 2700),
('man', 2570),
('robert baratheon', 2396),
('daario', 2246),
('ygritte', 2184),
('tormund', 2037),
('gendry baratheon', 1996),
('missandei', 1953),
('sam tarly', 1941),
('oberyn martell', 1906),
('yara greyjoy', 1840),
('shae', 1803),
('osha', 1660),
('gilly', 1491),
('roose', 1414),
('jaqen hghar', 1406),
('tommen lannister', 1381),
('qyburn', 1321),
('talisa', 1315),
('podrick', 1295),
('euron greyjoy', 1294),
('grey worm', 1231),
('mance', 1209),
('thoros', 1177),
('sandor', 1142),
('beric', 1109),
('alliser thorne', 1086),
('walder', 1051),
('shireen', 1029),
('barristan', 942),
('hot pie', 938),
('yoren', 922),
('marwyn', 895),
('pycelle', 842),
('lysa', 834),
('xaro', 822),
('loras', 813),
('grand maester pycelle', 796),
('qhorin', 793),
('hizdahr', 790),
('balon', 785),
('viserys targaryen', 775),
('luwin', 745),
('locke', 734),
('meera', 720),
('randyll', 715),
('ellaria', 709),
('brynden', 703),
('lancel', 693),
('renly', 684),
('ray', 677),
('spice king', 676),
('jeor mormont', 664),
('grenn', 663),
('jojen', 659),
('edmure', 645),
('petyr', 637),
('alliser', 621),
('ros', 617),
('aemon', 615),
('maester aemon', 612),
('roose bolton', 602),
('tycho', 600),
('selyse', 592),
('renly baratheon', 569),
('lady crane', 568),
('walder frey', 556),
('lyanna', 556),
('janos', 541),
('doreah', 517),
('doran', 515),
('soldier', 512),
('myranda', 508),
('craster', 500),
('dolorous edd', 495),
('rickard karstark', 456),
('syrio forel', 454),
('mace', 447),
('septon', 441),
('matthos', 418),
('woman', 404),
('lysa arryn', 398),
('waif', 391),
('kevan', 389),
('guard', 388),
('farmer hamlet', 354),
('tanner', 354),
('orell', 344),
('khal moro', 343),
('polliver', 342),
('maester luwin', 341),
('alton', 341),
('benjen', 329),
('mirri maz duur', 329),
('jeor', 307),
('anguy', 297),
('olyvar', 297),
('kinvara', 294),
('edd', 293),
('viserys', 288),
('loras tyrell', 288),
('rast', 284),
('pyp', 283),
('robin', 277),
('myrcella', 271),
('mero', 269),
('mossador', 267),
('salladhor', 262),
('benjen stark', 258),
('barristan selmy', 258),
('robett', 254),
('ser dontos', 253),
('men', 252),
('septa mordane', 251),
('olly', 245),
('saan', 241),
('jory cassel', 237),
('izembaro', 228),
('fennesz', 224),
('smalljon', 221),
('malko', 220),
('lord royce', 219),
('styr', 207),
('janos slynt', 206),
('maester', 206),
('old nan', 205),
('tyene', 205),
('drogon', 205),
('sallador', 204),
('bobono', 204),
('irri', 199),
('threeeyed raven', 194),
('wolkan', 193),
('karl tanner', 190),
('obara', 189),
('greatjon umber', 187),
('black walder', 187),
('lord mormont', 186),
('radzal mo eraz', 185),
('roz', 179),
('illyrio', 177),
('pyat pree', 173),
('dothraki matron', 170),
('meryn', 169),
('bloodrider', 168),
('lady anya', 165),
('aeron', 161),
('maester pycelle', 154),
('dagmer', 153),
('lord', 150),
('rodrik', 150),
('moles town whore', 150),
('rakharo', 149),
('ed', 149),
('lothar', 148),
('frey soldier', 147),
('all', 143),
('lord of bones', 142),
('meryn trant', 140),
('haylene', 139),
('yohn royce', 138),
('karsi', 137),
('dickon', 137),
('kraznys', 136),
('yezzan', 136),
('ser jorah', 135),
('marillion', 134),
('royce', 133),
('cressen', 131),
('black lorren', 128),
('melessa', 125),
('old man', 120),
('gold cloak', 119),
('camello', 119),
('nymeria', 118),
('loboda', 118),
('leader', 118),
('will', 117),
('razdal', 117),
('clarenzo', 111),
('lord varys', 109),
('male singer', 109),
('winterfell shepherd', 108),
('trystane', 108),
('kevan lannister', 106),
('dying man', 105),
('lady olenna', 105),
('derryk', 104),
('storyteller', 104),
('wildling', 102),
('qotho', 98),
('wine merchant', 95),
('violet', 94),
('ralf', 94),
('maggy', 93),
('khal drogo', 90),
('pyatt pree', 90),
('drogo', 90),
('harrag', 90),
('rorge', 89),
('mhaegen', 88),
('dim dalba', 88),
('young hodor', 87),
('captain', 86),
('rodrick cassel', 83),
('rickon', 83),
('kraznys mo nakloz', 83),
('banker', 83),
('eddark stark', 82),
('rennick', 82),
('lord karstark', 80),
('talla', 80),
('rider', 79),
('slave owner', 77),
('gatins', 75),
('mountain', 74),
('priestess', 72),
('elaria', 72),
('crowd', 71),
('tobho mott', 70),
('knight', 69),
('khal', 69),
('guard captain', 69),
('quaith', 68),
('glover', 68),
('yohn', 68),
('girl', 67),
('morgan', 67),
('red priest', 66),
('alliser throne', 66),
('maester wolkan', 65),
('prostitute', 63),
('prisoner', 63),
('quorin', 63),
('septa unella', 63),
('quaithe', 62),
('lollys stokeworth', 62),
('manderly', 62),
('announcer', 61),
('all together', 61),
('lady walda', 61),
('amory', 59),
('mordane', 58),
('kovarro', 58),
('prendahl', 58),
('lancel lannister', 57),
('robin arryn', 56),
('vala', 54),
('lollys', 53),
('nights watchman', 52),
('illyrio mopatis', 51),
('steelshanks walton', 51),
('wife', 51),
('ladyc rane', 51),
('blackfish', 50),
('priest', 49),
('archmaester', 49),
('young ned', 48),
('women', 47),
('areo', 47),
('black haired prostitute', 47),
('lhazareen woman', 46),
('pypar', 45),
('pycell', 45),
('aerson', 45),
('red priestess', 45),
('handmaiden', 44),
('torturer', 44),
('hizdahr zo loraq', 44),
('jonos bracken', 43),
('martyn', 43),
('crayah', 43),
('vardis egen', 42),
('sam pyp and grenn', 42),
('elder meereen slave', 42),
('king joffrey', 41),
('ser barristan', 41),
('kings soldier', 41),
('steward', 40),
('hodor', 40),
('drowned priest', 39),
('child', 39),
('shadow tower brother', 39),
('arthur', 39),
('reginald', 38),
('harry', 38),
('ser vardis', 37),
('lommy greenhands', 37),
('wounded soldier', 37),
('tickler', 37),
('frey guard', 37),
('head', 37),
('lem', 37),
('dirah', 37),
('mord', 36),
('dornish lord', 36),
('yarwyck', 36),
('alliser thorn', 36),
('thin man', 36),
('melara', 35),
('owner', 35),
('lommy', 34),
('pig farmer', 34),
('militant', 34),
('kingsguard', 34),
('teela', 34),
('maid', 33),
('blacksmith', 33),
('morag', 33),
('leaf', 33),
('rickard', 32),
('cassel', 31),
('messenger', 31),
('kings landing page', 31),
('waymar royce', 30),
('kings landing guard', 30),
('protester', 30),
('frey men', 30),
('bianca', 30),
('nora', 30),
('gared', 29),
('rattleshirt', 29),
('pyelle', 29),
('rickon stark', 27),
('marei', 27),
('robb dwarf', 27),
('braavosi man', 27),
('mycah', 26),
('rodrik cassel', 26),
('othell yarwyck', 26),
('farlen', 26),
('young lyanna', 26),
('unsullied', 25),
('meereen slave', 25),
('maester pycell', 25),
('hugh of vale', 24),
('whore', 24),
('walda', 24),
('colen', 23),
('edmure roslin', 23),
('guymon', 23),
('rhaegar', 23),
('leo lefford', 21),
('balon dwarf', 21),
('harpy', 21),
('daisy', 20),
('musician', 20),
('moles town madam', 20),
('mace tyrell', 20),
('assassin', 19),
('frey man', 19),
('donnel', 19),
('bolton bannerman', 19),
('young man', 19),
('shagga', 18),
('joffrey dwarf', 18),
('sissy', 18),
('daario naharis', 18),
('bolton officer', 18),
('othell yarwick', 18),
('umber', 18),
('martha', 18),
('masha heddle', 17),
('master', 17),
('wildling elder', 17),
('young benjen', 17),
('child of forest', 17),
('belicho', 17),
('lyanna mormont', 17),
('owen', 17),
('end', 16),
('jacks', 16),
('allister', 16),
('attendant', 16),
('stable boy', 15),
('portan', 15),
('ahsa', 15),
('brother', 15),
('vale knight', 15),
('ser alliser', 14),
('tansy', 14),
('renly dwarf', 14),
('master of arms', 14),
('brothers', 14),
('robett glover', 14),
('little bird', 13),
('street urchin', 13),
('gerard', 13),
('axell florent', 13),
('bolton guard', 13),
('grand maester pyrcelle', 13),
('ellia', 13),
('steward of house stark', 12),
('stark guard', 12),
('tribesmen of vale', 12),
('warg', 12),
('ranger', 12),
('slaver', 12),
('buer', 12),
('septa', 12),
('shouting', 12),
('vicky', 12),
('lannister soldier', 11),
('mhaegan', 11),
('silk king', 11),
('morgans friend', 11),
('manservant', 11),
('lannister scout', 10),
('kings landing baker', 10),
('galbart glover', 10),
('servant', 10),
('greizhen', 10),
('roslin', 10),
('lord bolton', 10),
('quick', 10),
('strong', 10),
('male voice', 10),
('dothraki', 10),
('bryndel', 10),
('tell me something', 9),
('kings guard', 9),
('addam marbrand', 9),
('group', 9),
('janos slunt', 9),
('slaves', 9),
('client', 9),
('listeners', 9),
('brans voice', 9),
('northman', 9),
('everyone', 8),
('stevron frey', 8),
('stannis dwarf', 8),
('ser vance', 8),
('knight of house bracken', 7),
('nights watch brother', 7),
('rodrik cassal', 7),
('populace', 7),
('dolorous', 7),
('rikon', 7),
('pyattpree', 7),
('cooper', 7),
('bowen marsh', 7),
('knight of house whent', 6),
('nights watcher', 6),
('several stark bannermen', 6),
('mountian', 6),
('everybody', 6),
('daughter', 6),
('hunters', 6),
('mosador', 6),
('bystanders', 6),
('dothraki man', 6),
('lyann', 6),
('father', 6),
('a voice', 5),
('myrcella baratheon', 5),
('rhakaro', 5),
('deanerys targarian', 5),
('ser rodrik', 5),
('all three', 5),
('timett', 5),
('ironborn', 5),
('innkeeper', 5),
('white rat', 5),
('buyer', 5),
('brothel keeper', 5),
('young rodrik', 5),
('kevin', 5),
('unsullied captain', 5),
('barriston', 4),
('unidentified nights watchers', 4),
('cohollo', 4),
('others at table', 4),
('eddision', 4),
('boy', 4),
('willem', 4),
('first mate', 4),
('squire', 4),
('merchant', 4),
('sammy', 4),
('wun wun', 4),
('survivor', 4),
('hooded figure', 4),
('mistress', 4),
('both', 4),
('jonrobb', 3),
('jhiqui', 3),
('beric dondarrion', 3),
('night watch stable boy', 3),
('jaremy rykker', 3),
('tomard', 3),
('ryger rivers', 3),
('armory', 3),
('cuard', 3),
('mar', 3),
('tailor', 3),
('ollys mother', 3),
('lhara', 3),
('together', 3),
('nights watch', 3),
('member', 3),
('waitress', 3),
('blonde prostitute', 3),
('voice', 3),
('ned alys', 3),
('john royce', 3),
('maryn trant', 2),
('voices outside', 2),
('stark bannermen', 2),
('watchman', 2),
('spice', 2),
('quent', 2),
('driver', 2),
('merry', 2),
('officer', 2),
('dolrous edd', 2),
('yarwick', 2),
('thenn warg', 2),
('sand snakes', 2),
('karstark', 2),
('waldery frey', 2),
('archers', 2),
('cold', 1),
('title', 1),
('main', 1),
('karl', 1),
('doloroud edd', 1),
('slave buyer', 1),
('giant', 1),
('head prostitute', 1),
('nights watchmen', 1),
('dothraki woman', 1),
('little sam', 1),
('riverlands lord', 1),
('dornish prince', 1),
('ironborn lord', 1),
('vale lord', 1)]
答案
df_words=df_words.sort_values(by='Name')
L_count=[]
N_words=list(zip(df_words['Name'],df_words['Words']))
for i in N_words:
if i==N_words[0]:
L_count.append(i[1])
last=i[0]
else:
L_count.append(L_count[-1]+i[1] if i[0]==last else i[1])
last=i[0]
df_words['Count']=L_count
df_words['Name'][df_words['Count'].idxmax()]
'tyrion lannister'
【练习二】现有一份关于科比的投篮数据集,请解决如下问题:
(a)哪种action_type和combined_shot_type的组合是最多的?
(b)在所有被记录的game_id中,遭遇到最多的opponent是一个支?
pd.read_csv('data/Kobe_data.csv',index_col='shot_id').head()
|
action_type |
combined_shot_type |
game_event_id |
game_id |
lat |
loc_x |
loc_y |
lon |
minutes_remaining |
period |
... |
shot_made_flag |
shot_type |
shot_zone_area |
shot_zone_basic |
shot_zone_range |
team_id |
team_name |
game_date |
matchup |
opponent |
shot_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
Jump Shot |
Jump Shot |
10 |
20000012 |
33.9723 |
167 |
72 |
-118.1028 |
10 |
1 |
... |
NaN |
2PT Field Goal |
Right Side(R) |
Mid-Range |
16-24 ft. |
1610612747 |
Los Angeles Lakers |
2000/10/31 |
LAL @ POR |
POR |
2 |
Jump Shot |
Jump Shot |
12 |
20000012 |
34.0443 |
-157 |
0 |
-118.4268 |
10 |
1 |
... |
0.0 |
2PT Field Goal |
Left Side(L) |
Mid-Range |
8-16 ft. |
1610612747 |
Los Angeles Lakers |
2000/10/31 |
LAL @ POR |
POR |
3 |
Jump Shot |
Jump Shot |
35 |
20000012 |
33.9093 |
-101 |
135 |
-118.3708 |
7 |
1 |
... |
1.0 |
2PT Field Goal |
Left Side Center(LC) |
Mid-Range |
16-24 ft. |
1610612747 |
Los Angeles Lakers |
2000/10/31 |
LAL @ POR |
POR |
4 |
Jump Shot |
Jump Shot |
43 |
20000012 |
33.8693 |
138 |
175 |
-118.1318 |
6 |
1 |
... |
0.0 |
2PT Field Goal |
Right Side Center(RC) |
Mid-Range |
16-24 ft. |
1610612747 |
Los Angeles Lakers |
2000/10/31 |
LAL @ POR |
POR |
5 |
Driving Dunk Shot |
Dunk |
155 |
20000012 |
34.0443 |
0 |
0 |
-118.2698 |
6 |
2 |
... |
1.0 |
2PT Field Goal |
Center(C) |
Restricted Area |
Less Than 8 ft. |
1610612747 |
Los Angeles Lakers |
2000/10/31 |
LAL @ POR |
POR |
5 rows × 24 columns
(a)
df=pd.read_csv('data/Kobe_data.csv',index_col='shot_id')
pd.Series(list(zip(df['action_type'],df['combined_shot_type']))).value_counts().index[0]
('Jump Shot', 'Jump Shot')
(b)
就是每一个gameid对应一场比赛
每场比赛是一个对手,就问哪个对手遇到的最多
df['game_id'].unique()
array([20000012, 20000019, 20000047, ..., 49900086, 49900087, 49900088],
dtype=int64)
df.groupby('game_id')['opponent'].unique().apply(lambda x:x[0]).value_counts().nlargest(1)
SAS 91
Name: opponent, dtype: int64
df.groupby('game_id')['opponent'].unique().astype(str).value_counts().nlargest(1)
['SAS'] 91
Name: opponent, dtype: int64
list(zip(df['game_id'],df['opponent']))
pd.Series(pd.Series(list(zip(df['game_id'],df['opponent']))).unique()).value_counts()
(29701127, GSW) 1
(20400915, CHA) 1
(20100440, DEN) 1
(21100169, CLE) 1
(20200372, PHI) 1
..
(20200842, SEA) 1
(20700326, SAS) 1
(29601055, DEN) 1
(49700071, UTA) 1
(21200888, ATL) 1
Length: 1559, dtype: int64
pd.Series(list(list(zip(*(pd.Series(list(zip(df['game_id'],df['opponent']))).unique()).tolist()))[1])).value_counts().nlargest(1)
SAS 91
dtype: int64
思维导图来自队友阿布