题目描述
把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。
判断丑数的函数:
def isUglyNum(self, num):
while num % 2 == 0:
num /= 2
while num % 3 == 0:
num /= 3
while num % 5 == 0:
num /= 5
if num == 1:
return 1
return 0
如果采用暴力的解法:
class Solution:
def isUglyNum(self, num):
while num % 2 == 0:
num /= 2
while num % 3 == 0:
num /= 3
while num % 5 == 0:
num /= 5
if num == 1:
return 1
return 0
def GetUglyNumber_Solution(self, index):
# write code here
if index < 1:
return 0
if index == 1:
return 1
result = 1
count = 1
while True:
result += 1
if self.isUglyNum(result):
count += 1
if count == index:
return result
print(Solution().GetUglyNumber_Solution(1500))
求1500个丑数肯定会超时
使用T2 T3 T5表示遍历的时候乘以2 3 5,需要遍历之前的每一个数字直到求出M2 M3 M5
class Solution:
def GetUglyNumber_Solution(self, index):
# write code here
if index < 1:
return 0
if index == 1:
return 1
uglyNumberList = [1]
T2 , T3, T5 = 0, 0, 0
for i in range(1, index):
if uglyNumberList[T2] * 2 <= uglyNumberList[i - 1]:
T2 += 1
if uglyNumberList[T3] * 3 <= uglyNumberList[i - 1]:
T3 += 1
if uglyNumberList[T5] * 5 <= uglyNumberList[i - 1]:
T5 += 1
uglyNumber = min(uglyNumberList[T2] * 2, uglyNumberList[T3] * 3, uglyNumberList[T5] * 5) #M2 M3 M5
uglyNumberList.append(uglyNumber)
return uglyNumberList[index - 1]
print(Solution().GetUglyNumber_Solution(1500))
输出:859963392