- 【射频雷达模拟器】生成用于近距离挥手动作的调频连续波(FMCW)雷达数据研究(Matlab代码实现)
天天程序猿
matlab数据结构java
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码实现⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫
- F. Gardening Friends
L_M_TY
算法数据结构
题目链接:Problem-F-Codeforces题目大意:给一颗n结点的树,起初根结点为1,树的成本定义为树上所有顶点中从根到顶点的最大距离,现在你可以有一种操作,将根结点转移到相邻的结点,但会有操作成本成本的消耗。现将求最大利润(因为他要卖)。利润==树的成本-操作的总成本。输入的第一行包含一个整数t(1≤t≤1e4)-测试用例数。测试用例说明如下。每个测试用例的第一行都包含一个整数n、k、c
- P2678 [NOIP2015 提高组] 跳石头
洛谷之蒟蒻
算法数据结构
题目背景NOIP2015Day2T1题目描述一年一度的“跳石头”比赛又要开始了!这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有N块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由
- Microchip 系列:SAM L 系列 (基于 ARM Cortex-M0+)_(12).ADC和DAC模块应用
kkchenkx
单片机开发arm开发驱动开发java数据库架构
ADC和DAC模块应用模拟-to-数字转换器(ADC)的应用ADC概述模拟-to-数字转换器(ADC)是将模拟信号转换为数字信号的关键组件。在Microchip的SAML系列单片机中,ADC模块通常用于采集传感器数据、环境参数等模拟信号。SAML系列的ADC模块具有高分辨率、低功耗和灵活的配置选项,适用于各种嵌入式应用。ADC配置在开始使用ADC之前,需要进行一些基本配置,包括选择ADC通道、设置
- ADC与DAC(PWM)
tadus_zeng
嵌入式单片机
ADC-AnalogtoDigitalConverter模数转换器,将一个模拟信号变为数字信号。DAC-DigitaltoAnalogConverter数模转换器PWM-PulseWidthModulation脉冲宽度调制ADC分辨率模拟信号是一个连续函数,在信号范围内能输出的离散信号值越多,其分辨率就越高。离散信号通常用二进制表示,可以用比特作为单位,离散值个数就是2N2^N2NADC转换误差以
- 力扣11题盛最多水的容器 c语言解题思路
Y_ahwh
leetcodec语言算法
题目11.给定一个长度为n的整数数组height。有n条垂线,第i条线的两个端点是(i,0)和(i,height[i])。找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。说明:你不能倾斜容器。其实就是判断两边相距距离和两边最小值的乘积,结果只需要用一个max比较就行了,不需要输出两边和底部长度就很简单。1.第一种解法:双指针如果是c语言学完,在判断这题的
- 为什么手机需要这么多摄像头
Channing Lewis
硬件智能手机
手机配备多个摄像头的主要目的是提升摄影能力和满足多种场景需求。以下是多摄像头设计的原因和功能:1.提供多种焦段选择主摄像头(广角镜头):用于大多数拍摄场景,提供高分辨率和自然视角。超广角镜头:捕捉更广阔的视野,适合风景、建筑或大合照。长焦镜头:提供光学变焦功能,适合远距离拍摄而不损失画质。潜望式镜头:支持更高倍数的光学变焦,用于拍摄远景。2.提高拍摄质量专用深度传感器:提升背景虚化效果(人像模式)
- Java根据位置获取经纬度计算距离
拾 -.-
笔记高德地图经纬度地理编码逆地理编码距离计算
高德地图获取经纬度高德官方地址/***@author周坤*@dateCreatein10:512022/4/18*高德地理位置信息*地理/逆地理编码:https://lbs.amap.com/api/webservice/guide/api/georegeo*地理编码:将详细的结构化地址转换为高德经纬度坐标。且支持对地标性名胜景区、建筑物名称解析为高德经纬度坐标。*逆地理编码:将经纬度转换为详细结
- Java 实现度量地理分布标准距离的多种方法
老师来上课了
算法java开发语言
目录一、Java度量地理距离的需求与重要性二、常用的地理距离计算方法(一)Haversine公式计算法(二)利用高德地理信息API(三)RedisGEO测算法(四)JavaGeo库计算法(五)利用地图工具计算法三、总结一、Java度量地理距离的需求与重要性在日常的软件开发中,根据地理点位坐标计算距离的需求广泛存在于多个领域。例如,在物流管理系统中,需要准确计算货物运输的起点与终点之间的距离,以便合
- 构建局域网
sbiigu1
计算机相关网络应用网络协议数据结构应用服务器DOS
转自:[url]http://www.zhirui.com/it/2004/8-3/1185-2.html[/url]随着社会的不断进步,资源共享已经成为信息交流的一种重要方式,小到几个人的联网对战,大到覆盖全球的Internet,网络让许多人拉近了距离。而在学校、网吧和小型办公室首先接触的就是局域网。局域网基本知识1.基本概念局域网LAN(LocalAreaNetwork):通常指的都是规模不大
- 使用scikit-learn中的KNN包实现对鸢尾花数据集的预测
辞落山
scikit-learnpython机器学习
引言K最近邻(KNN)算法是一种简单且直观的分类算法。它通过计算数据点之间的距离来对新样本进行分类。鸢尾花数据集是一个经典的机器学习数据集,包含了三种不同类型的鸢尾花,每种类型由四个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)描述。本文将使用scikit-learn中的KNN算法对该数据集进行分类预测。KNN算法概述KNN算法的核心思想是:对于一个未知类别的样本,通过计算该样本与已知样本的距离,
- LeetCode - 解题笔记 - 127 - Word Ladder
支锦铭
LeetCode解题笔记leetcodebfs
Solution1实际上是对0126.WordLadderII的变体,不需要返回路径,只需要计算层数。时间复杂度:O(Nd)O(N^d)O(Nd),其中NNN为wordList的长度,ddd为编辑距离,最坏的搜索范围就是每一层都是全展开,实际会有大量剪枝空间复杂度:O(dNd)O(dN^d)O(dNd),其中NNN为wordList的长度,ddd为编辑距离,最坏的搜索范围就是每一层都是全展开,实际
- 在高分辨率或者扩展屏下微信截图出现放大问题的解决
张3蜂
eclipse
一般这种情况是在电脑的分辨率过高或者采用扩展屏时候出现。解决办法如下:右键微信快捷图标或者可执行程序,属性-兼容性-更改高DPI设置-勾选替代高DPI缩放行为,然后下面选择应用程序就好了。这个在部分软件的界面字体缩小很厉害、界面变下的软件,就得勾选替代高DPI缩放行为--选择系统增强等。所有的截图软件,当开启扩展屏,截图功能无法正常使用时,都可以采用此方法解决问题。
- 双目视觉之获取三维坐标(立体校正、Q矩阵与三角测量原理)
乐平要加油啊
YOLO+双目视觉计算机视觉opencv
前言双目视觉是一种模拟人类立体视觉的计算机视觉技术,它通过两个相机从不同的角度拍摄同一个场景,然后利用三角测量原理,计算出场景中物体的三维坐标信息。这种技术在机器人导航、自动驾驶、物体跟踪、三维重建等领域有广泛的应用。获取三维坐标是双目视觉的核心任务之一。通过对左右相机拍摄的图像进行特征匹配和视差计算,我们可以得到场景中每个像素点的视差值。视差值表示了同一个物体在左右图像中的位置差异,它与物体距离
- 机位:解锁摄影视角的多维度密码
长安er
光电摄影数码相机摄影小年机位相机佳能镜头
目录一、机位的构成要素(一)高度维度(二)角度维度(三)距离维度二、移动机位的魅力(一)推镜头(二)拉镜头(三)摇镜头(四)移镜头三、选择机位的考量因素(一)拍摄主题(二)拍摄场景(三)想要传达的情感四、综合运用机位要素在摄影艺术的领域中,机位的巧妙运用宛如一把神奇的钥匙,能够开启通往独特视觉体验的大门。机位并非单一维度的概念,它涵盖了高度、角度以及距离这三个关键要素,每个要素都如同一个独立的变量
- 【游戏设计原理】85 - 菲兹定律
tealcwu
#游戏设计的100个原理游戏游戏策划
1.什么是菲兹定律菲兹定律描述了目标大小、目标距离与到达目标所需时间之间的关系。目标越大、离起始点越近,人们越容易快速而精确地点击它。相反,目标越小或距离越远,操作的难度就越高。2.适用场景菲兹定律适用于以下场景:游戏设计战斗与瞄准:决定目标的大小和移动速度,平衡挑战与玩家体验。操控设计:控制器(如鼠标、手柄)精度与速度的优化。用户界面设计(UI/UX)按钮布局:将常用的功能按钮设计得更大,放置在
- 到底为什么PHP 内部有一个称为 Unix 时间戳的概念?
快点好好学习吧
PHPphpunix开发语言
什么是Unix时间戳?想象一下你有一个超级大的沙漏,从一个特定的时间点开始计时,这个时间点是1970年1月1日的午夜(也就是零点),这被称为“Unix纪元”。从那一刻起,每过一秒,沙漏就落下一颗沙子。Unix时间戳就是计算到现在的秒数,也就是沙漏中落下的沙子的数量。所以,如果你想知道现在距离1970年1月1日过去了多少秒,那就是当前的Unix时间戳。底层原理计算机喜欢用数字来表示一切,因为它们处理
- 显卡各种参数
iteye_17699
显卡各种参数2011年04月10日常见的显卡参数分为以下三部分:一、显示核心(芯片厂商、代号、型号、架构、频率、象素渲染管线、顶点着色引擎数、3DAPI、RAMDAC频率及支持MAX分辨率等)。二、显存颗粒(类型、封装类型、位宽、容量、速度、频率)三、PCB板(PCB层数、接口、供电位、散热器)一、显示核心显示核心就是所说的GPU,它在显卡中的作用,就像电脑整机中CPU的一样,GPU主要负责处理视
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- 【机器学习】必会降维算法之:多维缩放(MDS)
Carl_奕然
机器学习算法人工智能
多维缩放(MDS)1、引言2、多维缩放(MDS)2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小鱼:最近小屌丝在休假,难得的清闲,我这也闲言少叙,书归正传,咱就聊一聊降为算法之:多维缩放(MDS)在机器学习和数据科学领域,多维缩放(MultidimensionalScaling,简称MDS)是一种常用的降维技术。它能够在尽可能保留原始数据点间距离的
- 光纤到户(FTTH)网络:无源光网络(PON)、有源光网络(AON),一文给你讲透!
wljslmz
网络技术FTTHPONAON光纤
你好,这里是网络技术联盟站,我是瑞哥。光纤到户(FTTH,FiberToTheHome)是指通过光纤将通信信号直接传输到用户家庭的一种接入技术。与传统的铜缆接入方式相比,FTTH能够提供更高的带宽、更快的传输速度和更长的传输距离。近年来,随着互联网应用的迅猛发展和用户对高速宽带的需求不断增加,FTTH技术逐渐成为宽带接入的主流选择。FTTH网络的实现方式主要有两种:无源光网络(PON,Passiv
- Topaz Video AI——视频修复
爱研究的小牛
AIGC—视频AIGC
一、TopazVideoAI介绍及使用TopazVideoAI是一款基于人工智能的视频增强和修复软件,主要用于提升视频质量、去噪、插帧和分辨率提升。它利用深度学习技术对视频进行智能化处理,使得视频看起来更加清晰和流畅。TopazVideoAI特别适合那些需要修复旧视频、提升低分辨率视频质量的用户。二、TopazVideoAI的主要功能视频去噪:通过AI模型去除视频中的噪点,使画面更加干净。分辨率提
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- 【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPC Loss)如何计算?以及Wasserstein距离和CPC Loss结合的对抗训练示例,附代码(二)
努力学习的大大
深度学习基础深度学习迁移学习人工智能python
【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)文章目录【深度学习|迁移学习】Wassers
- Android FFmpeg 实现带滤镜的微信小视频录制功能
攻城狮百里
音视频C/C++C++音视频AndroidFFmpeg
本文将实现对采集的预览帧(添加滤镜)和PCM音频同时编码复用生成一个mp4文件,即实现一个仿微信小视频录制功能。音视频录制编码流程本文采用的是软件编码(CPU)实现,所以针对高分辨率的预览帧时,就需要考虑CPU能不能吃得消,在骁龙8250上使用软件编码分辨率超过1080P的图像就会导致CPU比较吃力,这个时候帧率就跟不上了。音视频录制代码实现Java层视频帧来自AndroidCamera2API回
- C#设置winform窗体自动适应不同分辨率的电脑
南华
c#电脑开发语言
C#设置winform窗体自动适应不同分辨率的电脑文章已被社区收录加入社区问题背景:用winform开发了一个上位机软件,本机的台式开发电脑是宽屏的,上位机软件的显示效果良好,而在笔记本电脑上使用上位机软件时,出现了界面超出屏幕,部分功能或内容无法显示完整的现象。探索之后,发现了一个规律:笔记本电脑的屏幕分辨率最大为1366×768,此时用vs2015中C#设计的winform窗体的size属性最
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 算法随笔_21:字符的最短距离
程序趣谈
算法
上一篇:算法随笔_20:区间子数组个数-CSDN博客=====================题目描述如下:给你一个字符串s和一个字符c,且c是s中出现过的字符。返回一个整数数组answer,其中answer.length==s.length且answer[i]是s中从下标i到离它最近的字符c的距离。两个下标i和j之间的距离为abs(i-j),其中abs是绝对值函数。示例1:输入:s="lovel
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
墩墩分墩
Pythonpython自动化自动化脚本自动化测试pyautogui
文章目录1.PyAutoGUI简介2.不同操作系统引入模块3.全局延迟和临时休眠4,自动防故障功能5.获取屏幕分辨率—用于定位,这是最关键的,找到要点击的位置(像素坐标)6.获取鼠标位置7.判断坐标是否在屏幕范围内:8.鼠标移动8.1.鼠标移动的基本操作8.2.鼠标移动效果-缓动/渐变(Tween/Easing)9.鼠标点击10.鼠标滚轮控制11.鼠标拖拽12.键盘控制13.消息弹窗函数14.屏幕
- 广东某海水取排水管线工程边坡自动化监测
中科岩创
物联网大数据
1.项目简介广东廉江核电项目田螺岭厂址位于廉江市车板镇北约4km处,地理位置为东经109°48’28.88“北纬21°34’01.55”,东距廉江市约48km,东南距湛江市约65km,厂址西南距离北部湾约4.5km。广东廉江核电项目一期工程海水取排水管线位于厂区南侧,全长约10100米。本次边坡设计范围沿取排水管路径距离厂区约8.5km,管道回填完成面标高4.8m-9.0m(1985国家高程基准,
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio