代码练习
HybridSN中添加SE模块
#! wget http://www.ehu.eus/ccwintco/uploads/6/67/Indian_pines_corrected.mat
#! wget http://www.ehu.eus/ccwintco/uploads/c/c4/Indian_pines_gt.mat
#! pip install spectral
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
import spectral
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class_num = 16
class SEBlock(nn.Module):
def __init__(self,in_channels,r=16):
super(SEBlock,self).__init__()
self.globalAvgPool = nn.AdaptiveAvgPool2d((1,1))
self.fc1 = nn.Linear(in_channels,round(in_channels/r))
self.fc2 = nn.Linear(round(in_channels/r),in_channels)
def forward(self,x):
out = self.globalAvgPool(x)
out = out.view(out.shape[0],-1)
out = F.relu(self.fc1(out))
out = F.sigmoid(self.fc2(out))
out = out.view(x.shape[0],x.shape[1],1,1)
out = x * out
return out
class HybridSN(nn.Module):
def __init__(self):
super(HybridSN,self).__init__()
self.conv3d1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
self.bn1 = nn.BatchNorm3d(8)
self.conv3d2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
self.bn2 = nn.BatchNorm3d(16)
self.conv3d3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
self.bn3 = nn.BatchNorm3d(32)
self.conv2d4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
self.SElayer = SEBlock(64,16)
self.bn4 = nn.BatchNorm2d(64)
self.fc1 = nn.Linear(18496,256)
self.fc2 = nn.Linear(256,128)
self.fc3 = nn.Linear(128,16)
self.dropout = nn.Dropout(0.4)
def forward(self,x):
out = F.relu(self.bn1(self.conv3d1(x)))
out = F.relu(self.bn2(self.conv3d2(out)))
out = F.relu(self.bn3(self.conv3d3(out)))
out = F.relu(self.bn4(self.conv2d4(out.reshape(out.shape[0],-1,19,19))))
out = self.SElayer(out)
out = out.reshape(out.shape[0],-1)
out = F.relu(self.dropout(self.fc1(out)))
out = F.relu(self.dropout(self.fc2(out)))
out = self.fc3(out)
return out
def applyPCA(X, numComponents):
newX = np.reshape(X, (-1, X.shape[2]))
pca = PCA(n_components=numComponents, whiten=True)
newX = pca.fit_transform(newX)
newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
return newX
# 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
def padWithZeros(X, margin=2):
newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
x_offset = margin
y_offset = margin
newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
return newX
# 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
# 给 X 做 padding
margin = int((windowSize - 1) / 2)
zeroPaddedX = padWithZeros(X, margin=margin)
# split patches
patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
patchIndex = 0
for r in range(margin, zeroPaddedX.shape[0] - margin):
for c in range(margin, zeroPaddedX.shape[1] - margin):
patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]
patchesData[patchIndex, :, :, :] = patch
patchesLabels[patchIndex] = y[r-margin, c-margin]
patchIndex = patchIndex + 1
if removeZeroLabels:
patchesData = patchesData[patchesLabels>0,:,:,:]
patchesLabels = patchesLabels[patchesLabels>0]
patchesLabels -= 1
return patchesData, patchesLabels
def splitTrainTestSet(X, y, testRatio, randomState=345):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
return X_train, X_test, y_train, y_test
# 地物类别
class_num = 16
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']
# 用于测试样本的比例
test_ratio = 0.90
# 每个像素周围提取 patch 的尺寸
patch_size = 25
# 使用 PCA 降维,得到主成分的数量
pca_components = 30
print('Hyperspectral data shape: ', X.shape)
print('Label shape: ', y.shape)
print('\n... ... PCA tranformation ... ...')
X_pca = applyPCA(X, numComponents=pca_components)
print('Data shape after PCA: ', X_pca.shape)
print('\n... ... create data cubes ... ...')
X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
print('Data cube X shape: ', X_pca.shape)
print('Data cube y shape: ', y.shape)
print('\n... ... create train & test data ... ...')
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
print('Xtrain shape: ', Xtrain.shape)
print('Xtest shape: ', Xtest.shape)
# 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
Xtest = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
print('before transpose: Xtrain shape: ', Xtrain.shape)
print('before transpose: Xtest shape: ', Xtest.shape)
# 为了适应 pytorch 结构,数据要做 transpose
Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
Xtest = Xtest.transpose(0, 4, 3, 1, 2)
print('after transpose: Xtrain shape: ', Xtrain.shape)
print('after transpose: Xtest shape: ', Xtest.shape)
""" Training dataset"""
class TrainDS(torch.utils.data.Dataset):
def __init__(self):
self.len = Xtrain.shape[0]
self.x_data = torch.FloatTensor(Xtrain)
self.y_data = torch.LongTensor(ytrain)
def __getitem__(self, index):
# 根据索引返回数据和对应的标签
return self.x_data[index], self.y_data[index]
def __len__(self):
# 返回文件数据的数目
return self.len
""" Testing dataset"""
class TestDS(torch.utils.data.Dataset):
def __init__(self):
self.len = Xtest.shape[0]
self.x_data = torch.FloatTensor(Xtest)
self.y_data = torch.LongTensor(ytest)
def __getitem__(self, index):
# 根据索引返回数据和对应的标签
return self.x_data[index], self.y_data[index]
def __len__(self):
# 返回文件数据的数目
return self.len
# 创建 trainloader 和 testloader
trainset = TrainDS()
testset = TestDS()
train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(dataset=testset, batch_size=128, shuffle=False, num_workers=2)
# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 网络放到GPU上
net = HybridSN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min',verbose=True,factor=0.9,min_lr=1e-6)
# 开始训练
total_loss = 0
net.train()
for epoch in range(100):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# 优化器梯度归零
optimizer.zero_grad()
# 正向传播 + 反向传播 + 优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
scheduler.step(loss)
total_loss += loss.item()
nn.ReLU()
print('[Epoch: %d] [loss avg: %.4f] [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))
print('Finished Training')
net.eval()
count = 0
for inputs,labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = net(inputs)
_,preds = torch.max(outputs,1)
count += (preds == labels).sum().item()
print("Test ACC:{}".format(count/len(testset)))
测试结果对比
未加BN、SE模块时测试三次的结果:0.9805、0.9412、0.9624
添加BN层后测试三次的结果:0.9860、0.9789、0.9820
再添加学习率衰减后测试三次的结果:0.9895、0.9901、0.9897
再添加SE模块后测试三次的结果:0.9913、0.9895、0.9912
添加BN层后训练结果比较稳定,而且收敛的很快。
添加SE模块后,准确率还是略有提高的,但效果没有那么明显,可能是因为模型比较简单,已经采取提升性能的一些操作,而且只添加了一个SE模块,所以提升并没有那么明显。
问题思考
训练网络,然后多测试几次,会发现每次分类的结果都不一样的原因
原因是 网络中添加了dropout层和BN层时,在测试时应当关闭这两个层。
在训练时应当指定当前是训练模式:model.train()开启这两个层;在测试时应当指定是测试模式:model.eval()关闭这两个层。
dropout层在训练过程中以指定概率p使神经元失活,让它在这次的传播过程的输出为0。当我们的模型训练好进行预测时,要使用所有神经元而且要乘以一个补偿系数。所以要指定当前是训练还是测试模式。
BN层在测试的时候采用的是固定的mean和var,这俩固定的参数是在训练时统计计算得到的。因为这俩参数是在前向传播过程中计算的,所以在测试模式的时候你如果没有指定model.eval(),那么这俩参数还会根据你的测试数据更新,导致结果的参考价值不大。
综上,如果网络中添加了BN层和dropout层而不使用model.eval()的话,每次测试的时候 模型并不是固定的,所以每次的分类结果可能并不一致。
SENet的提升分类性能的本质原理
Excitation 的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定,提升有用的特征并抑制对当前任务用处不大的特征。
猜测:有用的特征的乘的scale比较大,它的数值就比较大;用处不大的特征乘的scale较小,它的数值就比较小。考虑在最后一个全局平均池化层处,有用的特征经过池化后的输出也比较大,它对最终分类结果的影响就比较大,同理用处不大的特征对最终分类结果的影响就比较小,这样提升了分类的性能。