NKOJ3798 有趣的数列
时间限制 : - MS 空间限制 : 65536 KB
评测说明 : 1000ms
问题描述
我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:
(1)它是从1到2n共2n个整数的一个排列{Ai};
(2)所有的奇数项满足A1< A3< …< A2n-1,所有的偶数项满足A2< A4< …< A2n;
(3)任意相邻的两项A2i-1与A2i(1≤i≤n)满足奇数项小于偶数项,即:A2i-1< A2i。
现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。
输入格式
用空格隔开的两个整数n和P。
50%的数据满足n≤1000
100%的数据满足n≤1000000且P≤1000000000。
输出格式
仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。
样例输入
3 10
样例输出
5
提示
样例说明:
对应的5个有趣的数列分别为(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6)。
来源 hnoi2009
思路:
h(n)即为该题的答案
使用公式c[2n][n]/(n+1)+组合数取模
#include
#include
using namespace std;
const int need=2000006;
int n,p;
int pr[need],tot,cnt[need],s[need];
bool mark[need];
void get_prime(int n)
{
for(int i=2,j,temp;i<=n;i++)
{
if(!mark[i])
{
pr[++tot]=i;
s[i]=tot;
}
for(j=1;j<=tot&&(temp=pr[j]*i)<=n;j++)
{
mark[temp]=true;
s[temp]=j;
if(i%pr[j]==0) break;
}
}
}
void add(int x,int val)
{
while(x!=1)
{
cnt[s[x]]+=val;
x/=pr[s[x]];
}
}
int ktl(int n)
{
get_prime(n<<1);
for(int i=2*n;i>n;i--) add(i,1);
for(int i=1;i<=n;i++) add(i,-1);
add(n+1,-1);
int ans=1;
for(int i=1;i<=tot;i++)
while(cnt[i]--)
ans=((long long)ans*pr[i])%p;
return ans;
}
int main()
{
scanf("%d%d",&n,&p);
cout<