这部分主要是在 kitti_dataset.py
这个文件夹中
import os
import sys
sys.path.append("/home/seivl/PCDet/pcdet")
import pickle
import copy
import numpy as np
from skimage import io
from pathlib import Path
import torch
import spconv
from pcdet.utils import box_utils, object3d_utils, calibration, common_utils
from pcdet.ops.roiaware_pool3d import roiaware_pool3d_utils
from pcdet.config import cfg
from pcdet.datasets.data_augmentation.dbsampler import DataBaseSampler
from pcdet.datasets import DatasetTemplate
class BaseKittiDataset(DatasetTemplate):
def __init__(self, root_path, split='train'):
super().__init__()
self.root_path = root_path
self.root_split_path = os.path.join(self.root_path, 'training' if split != 'test' else 'testing')
self.split = split
if split in ['train', 'val', 'test']:
split_dir = os.path.join(self.root_path, 'ImageSets', split + '.txt')
self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if os.path.exists(split_dir) else None
def set_split(self, split):
self.__init__(self.root_path, split)
def get_lidar(self, idx):
lidar_file = os.path.join(self.root_split_path, 'velodyne', '%s.bin' % idx)
assert os.path.exists(lidar_file)
return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
def get_image_shape(self, idx):
img_file = os.path.join(self.root_split_path, 'image_2', '%s.png' % idx)
assert os.path.exists(img_file)
return np.array(io.imread(img_file).shape[:2], dtype=np.int32) # (370, 1224)
def get_label(self, idx):
label_file = os.path.join(self.root_split_path, 'label_2', '%s.txt' % idx)
assert os.path.exists(label_file)
return object3d_utils.get_objects_from_label(label_file)
def get_calib(self, idx):
calib_file = os.path.join(self.root_split_path, 'calib', '%s.txt' % idx)
assert os.path.exists(calib_file)
return calibration.Calibration(calib_file)
def get_road_plane(self, idx):
plane_file = os.path.join(self.root_split_path, 'planes', '%s.txt' % idx)
with open(plane_file, 'r') as f:
lines = f.readlines()
lines = [float(i) for i in lines[3].split()]
plane = np.asarray(lines)
# Ensure normal is always facing up, this is in the rectified camera coordinate
if plane[1] > 0:
plane = -plane
norm = np.linalg.norm(plane[0:3])
plane = plane / norm
return plane
@staticmethod
def get_fov_flag(pts_rect, img_shape, calib):
'''
Valid point should be in the image (and in the PC_AREA_SCOPE)
:param pts_rect:
:param img_shape:
:return:
'''
pts_img, pts_rect_depth = calib.rect_to_img(pts_rect)
val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1])
val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0])
val_flag_merge = np.logical_and(val_flag_1, val_flag_2)
pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0)
return pts_valid_flag
def get_infos(self, num_workers=4, has_label=True, count_inside_pts=True, sample_id_list=None):
import concurrent.futures as futures
def process_single_scene(sample_idx):
print('%s sample_idx: %s' % (self.split, sample_idx))
info = {}
pc_info = {'num_features': 4, 'lidar_idx': sample_idx}
info['point_cloud'] = pc_info
image_info = {'image_idx': sample_idx, 'image_shape': self.get_image_shape(sample_idx)}
info['image'] = image_info
calib = self.get_calib(sample_idx)
P2 = np.concatenate([calib.P2, np.array([[0., 0., 0., 1.]])], axis=0)
R0_4x4 = np.zeros([4, 4], dtype=calib.R0.dtype)
R0_4x4[3, 3] = 1.
R0_4x4[:3, :3] = calib.R0
V2C_4x4 = np.concatenate([calib.V2C, np.array([[0., 0., 0., 1.]])], axis=0)
calib_info = {'P2': P2, 'R0_rect': R0_4x4, 'Tr_velo_to_cam': V2C_4x4}
info['calib'] = calib_info
# print(info)
if has_label:
obj_list = self.get_label(sample_idx)
annotations = {}
annotations['name'] = np.array([obj.cls_type for obj in obj_list])
annotations['truncated'] = np.array([obj.truncation for obj in obj_list])
annotations['occluded'] = np.array([obj.occlusion for obj in obj_list])
annotations['alpha'] = np.array([obj.alpha for obj in obj_list])
annotations['bbox'] = np.concatenate([obj.box2d.reshape(1, 4) for obj in obj_list], axis=0)
annotations['dimensions'] = np.array([[obj.l, obj.h, obj.w] for obj in obj_list]) # lhw(camera) format
annotations['location'] = np.concatenate([obj.loc.reshape(1, 3) for obj in obj_list], axis=0)
annotations['rotation_y'] = np.array([obj.ry for obj in obj_list])
annotations['score'] = np.array([obj.score for obj in obj_list])
annotations['difficulty'] = np.array([obj.level for obj in obj_list], np.int32)
num_objects = len([obj.cls_type for obj in obj_list if obj.cls_type != 'DontCare']) # object 的数量
num_gt = len(annotations['name']) # gt 的数量
index = list(range(num_objects)) + [-1] * (num_gt - num_objects)
"""
gt 的数量是>=object 的数量的
在label文件中,有一些是被标注成 'DontCare'
eg:
Car 0.00 0 -1.50 601.96 177.01 659.15 229.51 1.61 1.66 3.20 0.70 1.76 23.88 -1.48
Car 0.00 2 1.75 600.14 177.09 624.65 193.31 1.44 1.61 3.66 0.24 1.84 66.37 1.76
Car 0.00 0 1.78 574.98 178.64 598.45 194.01 1.41 1.53 3.37 -2.19 1.96 68.25 1.75
DontCare -1 -1 -10 710.60 167.73 736.68 182.35 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 758.52 156.27 782.52 179.23 -1 -1 -1 -1000 -1000 -1000 -10
print(num_gt,num_objects,index)
5 3 [0, 1, 2, -1, -1]
3 个 object 的 index 依次是 [0, 1, 2] , 2 个 'DontCare' 物体的 index 都是 -1
"""
annotations['index'] = np.array(index, dtype=np.int32)
loc = annotations['location'][:num_objects]
dims = annotations['dimensions'][:num_objects]
rots = annotations['rotation_y'][:num_objects]
loc_lidar = calib.rect_to_lidar(loc)
l, h, w = dims[:, 0:1], dims[:, 1:2], dims[:, 2:3]
gt_boxes_lidar = np.concatenate([loc_lidar, w, l, h, rots[..., np.newaxis]], axis=1)
annotations['gt_boxes_lidar'] = gt_boxes_lidar
info['annos'] = annotations
if count_inside_pts:
points = self.get_lidar(sample_idx)
calib = self.get_calib(sample_idx)
pts_rect = calib.lidar_to_rect(points[:, 0:3])
fov_flag = self.get_fov_flag(pts_rect, info['image']['image_shape'], calib)
pts_fov = points[fov_flag]
corners_lidar = box_utils.boxes3d_to_corners3d_lidar(gt_boxes_lidar)
num_points_in_gt = -np.ones(num_gt, dtype=np.int32)
for k in range(num_objects):
flag = box_utils.in_hull(pts_fov[:, 0:3], corners_lidar[k])
num_points_in_gt[k] = flag.sum()
annotations['num_points_in_gt'] = num_points_in_gt
# print(annotations)
"""
{'name': array(['Car', 'Car', 'Car', 'DontCare', 'DontCare'], dtype='
return info
# temp = process_single_scene(self.sample_id_list[0])
sample_id_list = sample_id_list if sample_id_list is not None else self.sample_id_list
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_scene, sample_id_list)
return list(infos)
def create_groundtruth_database(self, info_path=None, used_classes=None, split='train'):
database_save_path = Path(self.root_path) / ('gt_database' if split == 'train' else ('gt_database_%s' % split))
db_info_save_path = Path(self.root_path) / ('kitti_dbinfos_%s.pkl' % split)
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
with open(info_path, 'rb') as f:
infos = pickle.load(f)
for k in range(len(infos)):
print('gt_database sample: %d/%d' % (k + 1, len(infos)))
info = infos[k]
sample_idx = info['point_cloud']['lidar_idx']
points = self.get_lidar(sample_idx)
annos = info['annos']
names = annos['name']
difficulty = annos['difficulty']
bbox = annos['bbox']
gt_boxes = annos['gt_boxes_lidar']
num_obj = gt_boxes.shape[0]
point_indices = roiaware_pool3d_utils.points_in_boxes_cpu(
torch.from_numpy(points[:, 0:3]), torch.from_numpy(gt_boxes)
).numpy() # (nboxes, npoints)
for i in range(num_obj):
filename = '%s_%s_%d.bin' % (sample_idx, names[i], i)
filepath = database_save_path / filename
gt_points = points[point_indices[i] > 0]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or names[i] in used_classes:
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0],
'difficulty': difficulty[i], 'bbox': bbox[i], 'score': annos['score'][i]}
if names[i] in all_db_infos:
all_db_infos[names[i]].append(db_info)
else:
all_db_infos[names[i]] = [db_info]
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
@staticmethod
def generate_prediction_dict(input_dict, index, record_dict):
# finally generate predictions.
sample_idx = input_dict['sample_idx'][index] if 'sample_idx' in input_dict else -1
boxes3d_lidar_preds = record_dict['boxes'].cpu().numpy()
if boxes3d_lidar_preds.shape[0] == 0:
return {'sample_idx': sample_idx}
calib = input_dict['calib'][index]
image_shape = input_dict['image_shape'][index]
boxes3d_camera_preds = box_utils.boxes3d_lidar_to_camera(boxes3d_lidar_preds, calib)
boxes2d_image_preds = box_utils.boxes3d_camera_to_imageboxes(boxes3d_camera_preds, calib,
image_shape=image_shape)
# predictions
predictions_dict = {
'bbox': boxes2d_image_preds,
'box3d_camera': boxes3d_camera_preds,
'box3d_lidar': boxes3d_lidar_preds,
'scores': record_dict['scores'].cpu().numpy(),
'label_preds': record_dict['labels'].cpu().numpy(),
'sample_idx': sample_idx,
}
return predictions_dict
@staticmethod
def generate_annotations(input_dict, pred_dicts, class_names, save_to_file=False, output_dir=None):
def get_empty_prediction():
ret_dict = {
'name': np.array([]), 'truncated': np.array([]), 'occluded': np.array([]),
'alpha': np.array([]), 'bbox': np.zeros([0, 4]), 'dimensions': np.zeros([0, 3]),
'location': np.zeros([0, 3]), 'rotation_y': np.array([]), 'score': np.array([]),
'boxes_lidar': np.zeros([0, 7])
}
return ret_dict
def generate_single_anno(idx, box_dict):
num_example = 0
if 'bbox' not in box_dict:
return get_empty_prediction(), num_example
area_limit = image_shape = None
if cfg.MODEL.TEST.BOX_FILTER['USE_IMAGE_AREA_FILTER']:
image_shape = input_dict['image_shape'][idx]
area_limit = image_shape[0] * image_shape[1] * 0.8
sample_idx = box_dict['sample_idx']
box_preds_image = box_dict['bbox']
box_preds_camera = box_dict['box3d_camera']
box_preds_lidar = box_dict['box3d_lidar']
scores = box_dict['scores']
label_preds = box_dict['label_preds']
anno = {'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [],
'location': [], 'rotation_y': [], 'score': [], 'boxes_lidar': []}
for box_camera, box_lidar, bbox, score, label in zip(box_preds_camera, box_preds_lidar, box_preds_image,
scores, label_preds):
if area_limit is not None:
if bbox[0] > image_shape[1] or bbox[1] > image_shape[0] or bbox[2] < 0 or bbox[3] < 0:
continue
bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
bbox[:2] = np.maximum(bbox[:2], [0, 0])
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
if area > area_limit:
continue
if 'LIMIT_RANGE' in cfg.MODEL.TEST.BOX_FILTER:
limit_range = np.array(cfg.MODEL.TEST.BOX_FILTER['LIMIT_RANGE'])
if np.any(box_lidar[:3] < limit_range[:3]) or np.any(box_lidar[:3] > limit_range[3:]):
continue
if not (np.all(box_lidar[3:6] > -0.1)):
print('Invalid size(sample %s): ' % str(sample_idx), box_lidar)
continue
anno['name'].append(class_names[int(label - 1)])
anno['truncated'].append(0.0)
anno['occluded'].append(0)
anno['alpha'].append(-np.arctan2(-box_lidar[1], box_lidar[0]) + box_camera[6])
anno['bbox'].append(bbox)
anno['dimensions'].append(box_camera[3:6])
anno['location'].append(box_camera[:3])
anno['rotation_y'].append(box_camera[6])
anno['score'].append(score)
anno['boxes_lidar'].append(box_lidar)
num_example += 1
if num_example != 0:
anno = {k: np.stack(v) for k, v in anno.items()}
else:
anno = get_empty_prediction()
return anno, num_example
annos = []
for i, box_dict in enumerate(pred_dicts):
sample_idx = box_dict['sample_idx']
single_anno, num_example = generate_single_anno(i, box_dict)
single_anno['num_example'] = num_example
single_anno['sample_idx'] = np.array([sample_idx] * num_example, dtype=np.int64)
annos.append(single_anno)
if save_to_file:
cur_det_file = os.path.join(output_dir, '%s.txt' % sample_idx)
with open(cur_det_file, 'w') as f:
bbox = single_anno['bbox']
loc = single_anno['location']
dims = single_anno['dimensions'] # lhw -> hwl
for idx in range(len(bbox)):
print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f'
% (single_anno['name'][idx], single_anno['alpha'][idx], bbox[idx][0], bbox[idx][1],
bbox[idx][2], bbox[idx][3], dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0],
loc[idx][1], loc[idx][2], single_anno['rotation_y'][idx], single_anno['score'][idx]),
file=f)
return annos
def evaluation(self, det_annos, class_names, **kwargs):
assert 'annos' in self.kitti_infos[0].keys()
import pcdet.datasets.kitti.kitti_object_eval_python.eval as kitti_eval
if 'annos' not in self.kitti_infos[0]:
return 'None', {}
eval_det_annos = copy.deepcopy(det_annos)
eval_gt_annos = [copy.deepcopy(info['annos']) for info in self.kitti_infos]
ap_result_str, ap_dict = kitti_eval.get_official_eval_result(eval_gt_annos, eval_det_annos, class_names)
return ap_result_str, ap_dict
class KittiDataset(BaseKittiDataset):
def __init__(self, root_path, class_names, split, training, logger=None):
"""
:param root_path: KITTI data path
:param split:
"""
super().__init__(root_path=root_path, split=split)
self.class_names = class_names
self.training = training
self.logger = logger
self.mode = 'TRAIN' if self.training else 'TEST'
self.kitti_infos = []
self.include_kitti_data(self.mode, logger)
# self.kitti_infos = self.kitti_infos[:100]
self.dataset_init(class_names, logger)
def include_kitti_data(self, mode, logger):
if cfg.LOCAL_RANK == 0 and logger is not None:
logger.info('Loading KITTI dataset')
kitti_infos = []
for info_path in cfg.DATA_CONFIG[mode].INFO_PATH:
info_path = cfg.ROOT_DIR / info_path
with open(info_path, 'rb') as f:
infos = pickle.load(f)
kitti_infos.extend(infos)
self.kitti_infos.extend(kitti_infos)
if cfg.LOCAL_RANK == 0 and logger is not None:
logger.info('Total samples for KITTI dataset: %d' % (len(kitti_infos)))
def dataset_init(self, class_names, logger):
self.db_sampler = None
db_sampler_cfg = cfg.DATA_CONFIG.AUGMENTATION.DB_SAMPLER
if self.training and db_sampler_cfg.ENABLED:
db_infos = []
for db_info_path in db_sampler_cfg.DB_INFO_PATH:
db_info_path = cfg.ROOT_DIR / db_info_path
with open(str(db_info_path), 'rb') as f:
infos = pickle.load(f)
if db_infos.__len__() == 0:
db_infos = infos
else:
[db_infos[cls].extend(infos[cls]) for cls in db_infos.keys()]
self.db_sampler = DataBaseSampler(
db_infos=db_infos, sampler_cfg=db_sampler_cfg, class_names=class_names, logger=logger
)
voxel_generator_cfg = cfg.DATA_CONFIG.VOXEL_GENERATOR
# Support spconv 1.0 and 1.1
points = np.zeros((1, 3))
try:
self.voxel_generator = spconv.utils.VoxelGenerator(
voxel_size=voxel_generator_cfg.VOXEL_SIZE,
point_cloud_range=cfg.DATA_CONFIG.POINT_CLOUD_RANGE,
max_num_points=voxel_generator_cfg.MAX_POINTS_PER_VOXEL,
max_voxels=cfg.DATA_CONFIG[self.mode].MAX_NUMBER_OF_VOXELS
)
voxels, coordinates, num_points = self.voxel_generator.generate(points)
except:
self.voxel_generator = spconv.utils.VoxelGeneratorV2(
voxel_size=voxel_generator_cfg.VOXEL_SIZE,
point_cloud_range=cfg.DATA_CONFIG.POINT_CLOUD_RANGE,
max_num_points=voxel_generator_cfg.MAX_POINTS_PER_VOXEL,
max_voxels=cfg.DATA_CONFIG[self.mode].MAX_NUMBER_OF_VOXELS
)
voxel_grid = self.voxel_generator.generate(points)
def __len__(self):
return len(self.kitti_infos)
def __getitem__(self, index):
# index = 4
info = copy.deepcopy(self.kitti_infos[index])
sample_idx = info['point_cloud']['lidar_idx']
points = self.get_lidar(sample_idx)
calib = self.get_calib(sample_idx)
img_shape = info['image']['image_shape']
if cfg.DATA_CONFIG.FOV_POINTS_ONLY:
pts_rect = calib.lidar_to_rect(points[:, 0:3])
fov_flag = self.get_fov_flag(pts_rect, img_shape, calib)
points = points[fov_flag]
input_dict = {
'points': points,
'sample_idx': sample_idx,
'calib': calib,
}
if 'annos' in info:
annos = info['annos']
annos = common_utils.drop_info_with_name(annos, name='DontCare')
loc, dims, rots = annos['location'], annos['dimensions'], annos['rotation_y']
gt_names = annos['name']
bbox = annos['bbox']
gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1).astype(np.float32)
if 'gt_boxes_lidar' in annos:
gt_boxes_lidar = annos['gt_boxes_lidar']
else:
gt_boxes_lidar = box_utils.boxes3d_camera_to_lidar(gt_boxes, calib)
input_dict.update({
'gt_boxes': gt_boxes,
'gt_names': gt_names,
'gt_box2d': bbox,
'gt_boxes_lidar': gt_boxes_lidar
})
example = self.prepare_data(input_dict=input_dict, has_label='annos' in info)
example['sample_idx'] = sample_idx
example['image_shape'] = img_shape
return example
def create_kitti_infos(data_path, save_path, workers=4):
dataset = BaseKittiDataset(root_path=data_path)
train_split, val_split = 'train', 'val'
train_filename = save_path / ('kitti_infos_%s.pkl' % train_split)
val_filename = save_path / ('kitti_infos_%s.pkl' % val_split)
trainval_filename = save_path / 'kitti_infos_trainval.pkl'
test_filename = save_path / 'kitti_infos_test.pkl'
print('---------------Start to generate data infos---------------')
dataset.set_split(train_split)
kitti_infos_train = dataset.get_infos(num_workers=workers, has_label=True, count_inside_pts=True)
with open(train_filename, 'wb') as f:
pickle.dump(kitti_infos_train, f)
print('Kitti info train file is saved to %s' % train_filename)
dataset.set_split(val_split)
kitti_infos_val = dataset.get_infos(num_workers=workers, has_label=True, count_inside_pts=True)
with open(val_filename, 'wb') as f:
pickle.dump(kitti_infos_val, f)
print('Kitti info val file is saved to %s' % val_filename)
with open(trainval_filename, 'wb') as f:
pickle.dump(kitti_infos_train + kitti_infos_val, f)
print('Kitti info trainval file is saved to %s' % trainval_filename)
dataset.set_split('test')
kitti_infos_test = dataset.get_infos(num_workers=workers, has_label=False, count_inside_pts=False)
with open(test_filename, 'wb') as f:
pickle.dump(kitti_infos_test, f)
print('Kitti info test file is saved to %s' % test_filename)
print('---------------Start create groundtruth database for data augmentation---------------')
dataset.set_split(train_split)
dataset.create_groundtruth_database(train_filename, split=train_split)
print('---------------Data preparation Done---------------')
if __name__ == '__main__':
# if sys.argv.__len__() > 1 and sys.argv[1] == 'create_kitti_infos':
# create_kitti_infos(
# data_path=cfg.ROOT_DIR / 'data' / 'kitti',
# save_path=cfg.ROOT_DIR / 'data' / 'kitti'
# )
# else:
# A = KittiDataset(root_path='data/kitti', class_names=cfg.CLASS_NAMES, split='train', training=True)
# import pdb
# pdb.set_trace()
# ans = A[1]
create_kitti_infos(data_path=cfg.ROOT_DIR / 'data' / 'kitti', save_path=cfg.ROOT_DIR / 'data' / 'kitti')
kitti_dataset.py
文件中数据预处理部分,巧妙使用字典,保存每一帧的点云信息,对应的图像信息,矫正矩阵的信息
def process_single_scene(sample_idx):
print('%s sample_idx: %s' % (self.split, sample_idx))
info = {}
pc_info = {'num_features': 4, 'lidar_idx': sample_idx}
info['point_cloud'] = pc_info
image_info = {'image_idx': sample_idx, 'image_shape': self.get_image_shape(sample_idx)}
info['image'] = image_info
calib = self.get_calib(sample_idx)
P2 = np.concatenate([calib.P2, np.array([[0., 0., 0., 1.]])], axis=0)
R0_4x4 = np.zeros([4, 4], dtype=calib.R0.dtype)
R0_4x4[3, 3] = 1.
R0_4x4[:3, :3] = calib.R0
V2C_4x4 = np.concatenate([calib.V2C, np.array([[0., 0., 0., 1.]])], axis=0)
calib_info = {'P2': P2, 'R0_rect': R0_4x4, 'Tr_velo_to_cam': V2C_4x4}
info['calib'] = calib_info
{'point_cloud': {'num_features': 4, 'lidar_idx': '000009'},
'image': {'image_idx': '000009', 'image_shape': array([ 375, 1242], dtype=int32)},
'calib': {'P2': array([[7.21537720e+02, 0.00000000e+00, 6.09559326e+02, 4.48572807e+01],
[0.00000000e+00, 7.21537720e+02, 1.72854004e+02, 2.16379106e-01],
[0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 2.74588400e-03],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]),
'R0_rect': array([[0.9999239 , 0.00983776, -0.00744505, 0. ],
[-0.0098698 , 0.9999421 , -0.00427846, 0. ],
[ 0.00740253, 0.00435161, 0.9999631 , 0. ],
[ 0. , 0. , 0. , 1. ]],dtype=float32), 'Tr_velo_to_cam': array([[ 7.53374491e-03, -9.99971390e-01, -6.16602018e-04, -4.06976603e-03],
[ 1.48024904e-02, 7.28073297e-04, -9.99890208e-01, -7.63161778e-02],
[ 9.99862075e-01, 7.52379000e-03, 1.48075502e-02, -2.71780610e-01],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])}}
np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
lidar_file = "/home/seivl/PCDet/data/kitti/training/velodyne/000000.bin"
a = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
print(a)
print(a.shape)
[[ 1.8324e+01 4.9000e-02 8.2900e-01 0.0000e+00]
[ 1.8344e+01 1.0600e-01 8.2900e-01 0.0000e+00]
[ 5.1299e+01 5.0500e-01 1.9440e+00 0.0000e+00]
...
[ 3.7180e+00 -1.4060e+00 -1.7370e+00 3.4000e-01]
[ 3.7140e+00 -1.3910e+00 -1.7330e+00 4.1000e-01]
[ 3.9670e+00 -1.4740e+00 -1.8570e+00 0.0000e+00]]
(115384, 4)
使用 skimage.io 读出来的数据是numpy格式的
np.array(io.imread(img_file).shape[:2], dtype=np.int32)
from skimage import io
img_file = "/home/seivl/PCDet/data/kitti/training/image_2/000000.png"
a = io.imread(img_file)
print(a.shape)
a = io.imread(img_file).shape[:2]
print(a)
(370, 1224, 3)
(370, 1224)
readlines 读取整个txt 作为一个list,每行作为一个element,再对每行遍历
with open(label_file, 'r') as f:
lines = f.readlines()
objects = [Object3d(line) for line in lines]
with open(label_file, 'r') as f:
lines = f.readlines()
print(lines)
for line in lines:
print(line)
objects = [Object3d(line) for line in lines]
['Truck 0.00 0 -1.57 599.41 156.40 629.75 189.25 2.85 2.63 12.34 0.47 1.49 69.44 -1.56\n', 'Car 0.00 0 1.85 387.63 181.54 423.81 203.12 1.67 1.87 3.69 -16.53 2.39 58.49 1.57\n', 'Cyclist 0.00 3 -1.65 676.60 163.95 688.98 193.93 1.86 0.60 2.02 4.59 1.32 45.84 -1.55\n', 'DontCare -1 -1 -10 503.89 169.71 590.61 190.13 -1 -1 -1 -1000 -1000 -1000 -10\n', 'DontCare -1 -1 -10 511.35 174.96 527.81 187.45 -1 -1 -1 -1000 -1000 -1000 -10\n', 'DontCare -1 -1 -10 532.37 176.35 542.68 185.27 -1 -1 -1 -1000 -1000 -1000 -10\n', 'DontCare -1 -1 -10 559.62 175.83 575.40 183.15 -1 -1 -1 -1000 -1000 -1000 -10\n']
Truck 0.00 0 -1.57 599.41 156.40 629.75 189.25 2.85 2.63 12.34 0.47 1.49 69.44 -1.56
Car 0.00 0 1.85 387.63 181.54 423.81 203.12 1.67 1.87 3.69 -16.53 2.39 58.49 1.57
Cyclist 0.00 3 -1.65 676.60 163.95 688.98 193.93 1.86 0.60 2.02 4.59 1.32 45.84 -1.55
DontCare -1 -1 -10 503.89 169.71 590.61 190.13 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 511.35 174.96 527.81 187.45 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 532.37 176.35 542.68 185.27 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 559.62 175.83 575.40 183.15 -1 -1 -1 -1000 -1000 -1000 -10
line.strip().split(’ ') 去除换行符,按照空格分割
label = line.strip().split(' ')
with open(label_file, 'r') as f:
lines = f.readlines()
for line in lines:
label = line.strip().split(' ')
print(label)
['Truck', '0.00', '0', '-1.57', '599.41', '156.40', '629.75', '189.25', '2.85', '2.63', '12.34', '0.47', '1.49', '69.44', '-1.56']
['Car', '0.00', '0', '1.85', '387.63', '181.54', '423.81', '203.12', '1.67', '1.87', '3.69', '-16.53', '2.39', '58.49', '1.57']
['Cyclist', '0.00', '3', '-1.65', '676.60', '163.95', '688.98', '193.93', '1.86', '0.60', '2.02', '4.59', '1.32', '45.84', '-1.55']
['DontCare', '-1', '-1', '-10', '503.89', '169.71', '590.61', '190.13', '-1', '-1', '-1', '-1000', '-1000', '-1000', '-10']
['DontCare', '-1', '-1', '-10', '511.35', '174.96', '527.81', '187.45', '-1', '-1', '-1', '-1000', '-1000', '-1000', '-10']
['DontCare', '-1', '-1', '-10', '532.37', '176.35', '542.68', '185.27', '-1', '-1', '-1', '-1000', '-1000', '-1000', '-10']
['DontCare', '-1', '-1', '-10', '559.62', '175.83', '575.40', '183.15', '-1', '-1', '-1', '-1000', '-1000', '-1000', '-10']