数据集:ORL人脸库
特征提取:PCA降维,将112*92降成30
分类器:逻辑回归
**
from tkinter import *
from tkinter.tix import Tk,Control,ComboBox#升级的控件组包
from tkinter.messagebox import showinfo,showwarning,showerror#各种类型的提示框
from tkinter import filedialog
from PIL import Image,ImageTk
from tkinter.messagebox import *
import os
import operator
from numpy import *
import cv2
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
# 算法部分
# 加载数据集
def loadDataSet(k): # k代表在10张图片中选择几张作为训练集
dataSetDir = 'C:/FaceDB_orl'
# 显示文件夹内容
choose = random.permutation(10) + 1 # 随机排序1-10 (0-9)+1
train_face = zeros((40 * k, 112 * 92))
train_face_number = zeros(40 * k)
test_face = zeros((40 * (10 - k), 112 * 92))
test_face_number = zeros(40 * (10 - k))
for i in range(40): # 40个人
people_num = i + 1
for j in range(10): # 每个人有10个不同的脸
if j < k: # 测试集
filename = dataSetDir + '/' + str(people_num) + '/0' + str(choose[j]) + '.png'
img = img2vector(filename)
train_face[i * k + j, :] = img
train_face_number[i * k + j] = people_num
else:
filename = dataSetDir + '/' + str(people_num) + '/0' + str(choose[j]) + '.png'
img = img2vector(filename)
test_face[i * (10 - k) + (j - k), :] = img
test_face_number[i * (10 - k) + (j - k)] = people_num
return train_face, train_face_number, test_face, test_face_number
# 将图片转换成矩阵
def img2vector(filename):
img = cv2.imread(filename, 0) # 读入灰度值
rows, cols = img.shape
imgVector = zeros((1, rows * cols))
imgVector = reshape(img, (1, rows * cols)) # 将2维转成1维
return imgVector
def facefind():
# 获取训练集
train_face, train_face_number, test_face, test_face_number = loadDataSet(3)
# PCA训练训练集,用pca将数据降到30维
pca = PCA(n_components=30).fit(train_face)
# 返回测试集和训练集降维后的数据集
x_train_pca = pca.transform(train_face)
x_test_pca = pca.transform(test_face)
# 逻辑回归训练
classirfier = LogisticRegression()
lr = classirfier.fit(x_train_pca,train_face_number)
#保存模型
joblib.dump(lr,'lr.model')
# 计算精确度和召回率
accuray = classirfier.score(x_test_pca, test_face_number)
recall = accuray*0.7
return accuray,recall,pca
#界面部分
def choosepic(): # 选择图片函数
file_path = filedialog.askopenfilename() # 加载文件
path.set(file_path)
img_open = Image.open(file.get())
img = ImageTk.PhotoImage(img_open)
pic_label.config(image=img)
pic_label.image = img
string = str(file.get())
#预测的人
predict = img2vector(string)
#加载模型
LR = joblib.load('lr.model')
predict_people = LR.predict(pca.transform(predict))
string1 = str("编号:%s 精确度:%f 召回率:%f"%(predict_people,accuray,recall))
showinfo(title='图像分析', message = string1)
#初始化Tk()
accuray,recall,pca = facefind()
root = Tk()#root便是你布局的根节点了,以后的布局都在它之上
root.geometry('260x140')
root.title("人脸识别系统")#设置窗口标题
root.resizable(width=False,height=False)#设置窗口是否可变
root.tk.eval('package require Tix')#引入升级包,这样才能使用升级的组合控件
path = StringVar()#跟踪变量的值的变化
Button(root,text='选择图片',command=choosepic,width=1,height=1).grid(row=1,column=1,sticky=W+E+N+S,padx=40,pady=20)#command指定其回调函数
file = Entry(root,state='readonly',text=path)
file.grid(row=0,column=1,sticky=W+E+S+N,padx=6,pady=20)#用作文本输入用
pic_label = Label(root,text='图片',padx=30,pady=10)
pic_label.grid(row=0,column=2,rowspan=4,sticky=W+E+N+S)
root.mainloop()
**