- 买卖股票的最佳时机--js 算法
stoneSkySpace
算法javascript数据结构
一、买卖股票的最佳时机给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0;贪心算法:每次发现更低价格立即更新买入点(minPrice)每次发现更高利润立即更新卖出收益(maxProf
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- CppCon 2018 学习:A Little Order! Delving into the STL sorting algorithms
虾球xz
CppCon学习c++排序算法
记录一下一个编译器加密的算法#include#include#include#include#include#include#includenamespacedetail{//编译期伪随机key:每个字符对应不同keytemplateconstexprstd::uint8_tkey8(){returnstatic_cast((N*31+57)^0xAA);}}//namespacedetail//
- 使用c++编写一段人脸识别眨眼检测的代码
语嫣凝冰
c++opencv计算机视觉图像处理开发语言
我可以给你一些大致的步骤:使用摄像头或图像文件获取视频帧。使用人脸检测算法检测视频帧中的人脸。对检测到的人脸进行眼睛检测。判断眼睛是否闭合,如果是则认为该人在眨眼。以下是一段使用OpenCV库编写的C代码示例:```#include#include#include#includeusingnamespacestd;usingnamespacecv;intmain(){//使用摄像头获取视频帧Vid
- 欧盟AI法案、中国《生成式AI管理办法》规范数据隐私与算法歧视
DK_Allen
大模型人工智能算法
一、全球AI治理框架:双轨并行1.欧盟《AI法案》(2025全面生效)风险等级监管要求典型场景不可接受风险全面禁止社会评分系统、实时生物识别(公共场所)高风险强制注册+第三方评估+人工监督医疗诊断、关键基础设施管理有限风险透明度披露(AI生成内容标注)聊天机器人、深度伪造最小风险无限制垃圾邮件过滤、游戏AI处罚机制:最高罚金≈全球营收6%(或3000万欧元,取较高者)典型判例:ClearviewA
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- AWS WebRTC: 判断viewer端拉流是否稳定的算法
Jasper张
AWSWebRTCwebrtcaws服务器linux
在使用sdk-cviewer端进行拉流的过程中,viewer端拉取的是视频帧和音频帧,不会在播放器中播放,所以要根据收到的流来判断拉流过程是否稳定流畅。我这边采用的算法是:依据相邻帧之间的时间间隔是否落在期望值的±20%范围内。音频帧、视频帧的日志打印如下:07:19:26.263VERBOSEsampleAudioFrameHandler():AudioFramereceived.TrackId
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)
吃兔子的大脑腐
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于改进粒子群算法的混合储能系统容量优化研究一、混合储能系统容量优化的背景与挑战1.混合储能系统的定义与组成2.容量优化的核心目标3.优化面临的挑战二、传统粒子群算法的局限性及其改进策略1.传统PSO的缺陷2.改进粒子群算法的核心方法三、改进PSO在HESS容量
- 归并排序详解
创建两个临时数组存储待合并的子数组使用双指针法依次比较两个子数组的元素将较小的元素放入原数组的对应位置处理剩余未合并的元素前言1.算法概述归并排序是一种采用分治法(DivideandConquer)策略的排序算法,由约翰·冯·诺伊曼在1945年提出。它的核心思想是将一个大问题分解成若干个小问题,递归解决小问题后,再将结果合并起来。分治策略分解:将当前区间一分为二解决:递归地对两个子区间进行排序合并
- AI实践:智能工单系统的技术逻辑与应用
合力亿捷-小亿
人工智能机器学习
在当今数字化浪潮下,智能工单系统正逐渐成为企业服务管理的核心利器。智能工单系统,是依托前沿技术,将传统工单流程智能化、自动化的一套体系,它贯穿于企业服务的各个环节,从客户需求提交,到任务分配、进度跟踪,再到问题解决反馈,全方位覆盖。在企业服务管理中,其扮演着关键角色。一方面,它能极大提高服务效率,通过智能算法快速精准地将工单派发给最合适的人员,减少流转时间;另一方面,优化客户体验,客户能实时了解工
- 【Torch】nn.Dropout算法详解
油泼辣子多加
深度学习算法
1.定义nn.Dropout是PyTorch中用于防止神经网络过拟合的正则化层。其核心思想是在训练阶段随机“丢弃”(置零)部分神经元的输出,以减少网络对特定神经元的过度依赖;在推理阶段则保持所有神经元输出不变。2.输入与输出输入(Input)任意形状的浮点张量(如torch.float32、torch.float64等),常见于全连接层或卷积层的激活输出。输出(Output)与输入张量形状、dty
- Redis总结
傲祥Ax
redis数据库Redis重点总结
一、Redis是什么?key-value形式的非关系型数据库,基于内存(64位系统默认是物理内存的四分之三),单线程多路io复用,通常当缓存使用,提高查询效率。二、为什么使用Redis?2.1快(内单异高算)内存存储,单线程模型,异步操作,高效的网络通信,优化的算法和数据结构2.2作用2.2.1五大数据类型Redis存储,key-value形式,value的五种数据类型String,List,Se
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- Python, Rust 开发教育/医疗/文化资源去中心化分配APP
Geeker-2025
pythonrust
以下是为教育、医疗、文化资源设计的**去中心化分配APP**的完整技术方案,结合Python的灵活性和Rust的高性能与安全性,实现公平透明的资源分配:---###系统架构设计```mermaidgraphTDA[用户终端]-->B[区块链网络]A-->C[分配引擎]B-->D[智能合约]C-->E[资源数据库]D-->F[分配记录]subgraph技术栈C-.Rust.->G[核心分配算法]D-
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- JWT认证授权原理和简单实现
风铃喵游
node
1.关于JWT:(1).JWT(jsonwebtoken)是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准(2).JWT的声明一般被用于在身份提供者和服务提供者之间传递被认证的用户身份信息,以便于从资源服务器获取资源。最为常见的场景就是用户登录认证(3).因为数字签名的存在,这些信息是可信的,JWT可以使用HMAC算法或者是RSA的公私密钥对进行签名2.主要的应用场景:(1).身份
- 森林的智慧:随机森林与集成学习的民主之道
田园Coder
人工智能科普人工智能科普
当约阿夫·弗罗因德和罗伯特·沙皮尔提出的AdaBoost算法在90年代末期以其强大的预测精度震惊机器学习界,展示了“团结弱者为强者”的集成魅力时,另一种集成思想也在悄然孕育。这种思想同样信奉“众人拾柴火焰高”,但走的是一条与AdaBoost截然不同的路径:它不执着于反复调整数据权重去“关注”被前序模型分错的困难样本,而是致力于创造尽可能多样化的模型,然后让这些模型平等地投票。它的核心哲学是:如果每
- 大模型算法工程师面试宝典:精选面试题及参考答案全解析,助你备战AI算法工程师岗位!
大模型入门学习
人工智能产品经理大数据机器学习程序员大模型大模型学习
大模型应该算是目前当之无愧的最有影响力的AI技术。它正在革新各个行业,包括自然语言处理、机器翻译、内容创作和客户服务等,正成为未来商业环境的重要组成部分。截至目前大模型已超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关面试也是越来越卷。我今天给大家分享一篇大模型的面试题总结,内容较长,喜欢记得收藏、关注、点赞。ii.为什么会出现LLMs复读机问题?出现LLMs复读机问题可能
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 面了字节跳动的数据挖掘岗,感觉真的很难。。。
大模型爱好者社区
机器学习深度学习面试宝典数据挖掘人工智能数据分析算法面试
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对新手如何入门机器学习算法、该如何备战、面试常考点分享等热门话题进行了深入的讨论。基于社群的讨论,今天我整理了一个同学的面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们交流群。一面40min【编程题】有两种数据,分别是被转发的用户和转发的
- 【字节跳动】数据挖掘面试题0002:从转发数据中求原视频用户以及转发的最长深度和二叉排序树指定值
言析数智
数据挖掘常见面试题数据挖掘面试题
文章大纲题目一:从转发数据中求原视频用户以及转发的最长深度问题分析解题思路寻找原视频用户计算转发最长深度题目二:在一棵二叉排序树中,找到比给定数值小的最大节点方法思路题目一:从转发数据中求原视频用户以及转发的最长深度在数据处理和算法面试中,常常会遇到一些基于实际业务场景的题目,比如根据用户转发数据来分析原视频用户以及转发深度。今天就来探讨一道这样的面试题:给定被转发用户和转发用户两组数据,求原视频
- 归并排序算法
起个数先
数据结构与算法排序算法算法java
归并排序所用方法和基本原理归并排序是一种基于分治思想的排序算法。其基本原理如下:分解:将一个长度为(n)的数组不断地二分,直到每个子数组只包含一个元素(因为单个元素的数组天然是有序的)。例如,对于长度为(n)的数组,先找到中间位置(mid),将数组分为左半部分([l,mid])和右半部分([mid+1,r])。解决:递归地对左右两个子数组进行归并排序,使得左右子数组各自有序。合并:将两个已经有序的
- 两个点 定位_基于双天线的北斗定位系统设计与实现
weixin_39697096
两个点定位
前期实际北斗模块定位误差统计分析中得出了北斗模块的定位误差分布服从正态分布,根据北斗模块定位误差分布的规律,利用在同一块电路板上的双天线模块接收北斗定位信号,将定位信息传给TMS320F28335DSP芯片,DSP对北斗模块给出的定位信息做实时算法处理,并将处理后的定位信息传给嵌入式ARM芯片,ARM芯片在TFT液晶屏上更新定位信息,同时根据用户要求来设置北斗模块的工作模式。在接收不到北斗定位信息
- 【数据结构】排序算法:冒泡与快速
nanguochenchuan
数据结构排序算法数据结构算法
引言:排序算法的重要性排序算法是计算机科学的基础核心,直接影响程序性能和资源消耗。在C语言开发中,理解不同排序算法的特性对编写高效代码至关重要。本文将深入分析两种经典排序算法:简单直观的冒泡排序和高效快速的快速排序,并提供完整的C语言实现。冒泡排序:简单但低效基本思想冒泡排序通过相邻元素比较交换,使较大元素逐渐移动到数组末端,如同气泡上浮。C语言实现#includevoidbubbleSort(i
- 圈子系统公众号app小程序系统源码公众号+圈子小程序:如何用“内容+社交”打造用户闭环生态?
前端
圈子系统:构建"交流→共鸣→成长"的进阶生态一、系统设计理念演进1.0基础交流层话题发布/回复功能基础点赞评论互动简单分类标签系统2.0情感共鸣层情绪标签识别(AI分析内容情感倾向)共鸣指数算法(根据互动深度计算)志同道合推荐系统3.0成长体系层多维能力评估模型个性化成长路径成就勋章系统二、核心技术实现方案1.共鸣引擎#共鸣度计算算法示例defcalculate_resonance(topic):
- 【学习】《算法图解》第十二章学习笔记:K近邻算法
程序员
前言《算法图解》第十二章介绍了一种简单而强大的机器学习算法——K近邻算法(K-NearestNeighbors,简称KNN)。这是一种基于实例的学习方法,也是机器学习领域中最基础、最直观的算法之一。本章不仅讲解了KNN的基本原理和实现方式,还探讨了特征提取、归一化等重要概念,为读者打开了机器学习的大门。本笔记将梳理KNN算法的核心思想、实现步骤以及应用场景。一、K近邻算法概述(一)基本思想K近邻算
- 双指针算法总结
程序员Andrew
常见算法算法C++leetcode
双指针常见的双指针有两种形式:对撞指针,左右指针。对撞指针:对撞指针一般用于顺序结构中,也称左右指针。•对撞指针从两端向中间移动。以个指针从最左端开始,另⼀个从最右端开始,然后逐渐往中间逼近。•对撞指针的终止条件⼀般是两个指针相遇或者错开(也可能在循环内部找到结果直接跳出循环),也就是:left==right(两个指针指向同一个位置)left>right(两个指针错开)快慢指针:快慢指针又称为龟兔
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在