首先看看去干扰线的结果(java)
这里说下开发过程中遇到的问题
1.在网上使用了各种java类型的算法,直接对BufferedImage进行操作,但是都不理想
2.在使用Tesseract工具进行ocr识别的时候识别率也不高
解决第一个问题,我结合了网上的去干扰线算法,以及使用了opencv算法。使用的opencv也是借鉴一篇网上的博客。
解决第二个问题,是实用Tesseract工具针对我要识别的验证码进行独立的训练,而不是使用原始的训练数据进行识别,这样子可以明显的提升识别率。
源码
// 这里是调用的核心方法
public class ImageCleanPlanOpencv implements ImageClean{
Logger logger = LoggerFactory.getLogger(ImageCleanPlanOpencv.class);
public BufferedImage clean(BufferedImage oriBufferedImage) {
try {
BufferedImage cleanedBufferedImage = null;
//这里可以看到去燥的方法反复调用了几次,是为了得更好的去干扰线结果,这里可以根据自己的验证码情况来编写调用的次数,必须是偶数次,因为opencv的api会进行图像反色
cleanedBufferedImage = cleanLinesInImage(oriBufferedImage);
cleanedBufferedImage=cleanLinesInImage(cleanedBufferedImage);
cleanedBufferedImage=cleanLinesInImage(cleanedBufferedImage);
cleanedBufferedImage=cleanLinesInImage(cleanedBufferedImage);
// try {
// ImageUtil.generateImage(cleanedBufferedImage, ImageConstant.url,"new_","");
// } catch (IOException e) {
// e.printStackTrace();
// }
return cleanedBufferedImage;
} catch (IOException e) {
logger.error("去噪过程异常",e);
e.printStackTrace();
}
return null;
}
/**
*
* @param oriBufferedImage 需要去噪的图像
* @throws IOException
*/
public BufferedImage cleanLinesInImage(BufferedImage oriBufferedImage) throws IOException{
BufferedImage bufferedImage = oriBufferedImage;
int h = bufferedImage.getHeight();
int w = bufferedImage.getWidth();
// 灰度化
int[][] gray = new int[w][h];
for (int x = 0; x < w; x++)
{
for (int y = 0; y < h; y++)
{
int argb = bufferedImage.getRGB(x, y);
// 图像加亮(调整亮度识别率非常高)
int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);
int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);
int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);
if (r >= 255)
{
r = 255;
}
if (g >= 255)
{
g = 255;
}
if (b >= 255)
{
b = 255;
}
gray[x][y] = (int) Math
.pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2)
* 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);
}
}
// 二值化
int threshold = ostu(gray, w, h);
BufferedImage binaryBufferedImage = new BufferedImage(w, h, BufferedImage.TYPE_BYTE_BINARY);
for (int x = 0; x < w; x++)
{
for (int y = 0; y < h; y++)
{
if (gray[x][y] > threshold)
{
gray[x][y] |= 0x00FFFF;
} else
{
gray[x][y] &= 0xFF0000;
}
binaryBufferedImage.setRGB(x, y, gray[x][y]);
}
}
//这里开始是利用opencv的api进行处理
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat mat = bufferedImageToMat(binaryBufferedImage);
//第一次用opencv,这里不太明白这个size对象如何使用,针对我要识别的验证码图片,调整为4,4的效果比较好,如果是不同的验证码图片,可以尝试先不用这段opencv的代码,或者微调这里的参数
Mat kelner = Imgproc.getStructuringElement(MORPH_RECT, new Size(4, 4), new Point(-1, -1));
//腐蚀
Imgproc.erode(mat,mat,kelner);
//膨胀
Imgproc.dilate(mat,mat,kelner);
//图像反色
Core.bitwise_not(mat,mat);
//去噪点
// Imgproc.morphologyEx(mat,mat, MORPH_OPEN, kelner,new Point(-1,-1),1);
binaryBufferedImage = mat2BufImg(mat,".png");
cleanImage(binaryBufferedImage,h,w );
return binaryBufferedImage;
}
public void cleanImage(BufferedImage binaryBufferedImage,int h ,int w ){
//去除干扰线条
for(int y = 1; y < h-1; y++){
for(int x = 1; x < w-1; x++){
boolean flag = false ;
if(isBlack(binaryBufferedImage.getRGB(x, y))){
//左右均为空时,去掉此点
if(isWhite(binaryBufferedImage.getRGB(x-1, y)) && isWhite(binaryBufferedImage.getRGB(x+1, y))){
flag = true;
}
//上下均为空时,去掉此点
if(isWhite(binaryBufferedImage.getRGB(x, y+1)) && isWhite(binaryBufferedImage.getRGB(x, y-1))){
flag = true;
}
//斜上下为空时,去掉此点
if(isWhite(binaryBufferedImage.getRGB(x-1, y+1)) && isWhite(binaryBufferedImage.getRGB(x+1, y-1))){
flag = true;
}
if(isWhite(binaryBufferedImage.getRGB(x+1, y+1)) && isWhite(binaryBufferedImage.getRGB(x-1, y-1))){
flag = true;
}
if(flag){
binaryBufferedImage.setRGB(x,y,-1);
}
}
}
}
}
public Mat bufferedImageToMat(BufferedImage bi) {
Mat mat = new Mat(bi.getHeight(), bi.getWidth(), CvType.CV_8UC1);
byte[] white = new byte[] { (byte) 255 };
byte[] black = new byte[] { (byte) 0 };
for (int x=0; xfor (int y=0; yif (bi.getRGB(x, y) == Color.BLACK.getRGB()) {
mat.put(y, x, black);
} else {
mat.put(y, x, white);
}
}
}
return mat;
}
/**
* Mat转换成BufferedImage
*
* @param matrix
* 要转换的Mat
* @param fileExtension
* 格式为 ".jpg", ".png", etc
* @return
*/
public BufferedImage mat2BufImg (Mat matrix, String fileExtension) {
// convert the matrix into a matrix of bytes appropriate for
// this file extension
MatOfByte mob = new MatOfByte();
Imgcodecs.imencode(fileExtension, matrix, mob);
// convert the "matrix of bytes" into a byte array
byte[] byteArray = mob.toArray();
BufferedImage bufImage = null;
try {
InputStream in = new ByteArrayInputStream(byteArray);
bufImage = ImageIO.read(in);
} catch (Exception e) {
e.printStackTrace();
}
return bufImage;
}
public boolean isBlack(int colorInt)
{
Color color = new Color(colorInt);
if (color.getRed() + color.getGreen() + color.getBlue() <= 300)
{
return true;
}
return false;
}
public boolean isWhite(int colorInt)
{
Color color = new Color(colorInt);
if (color.getRed() + color.getGreen() + color.getBlue() > 300)
{
return true;
}
return false;
}
public int isBlackOrWhite(int colorInt)
{
if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730)
{
return 1;
}
return 0;
}
public int getColorBright(int colorInt)
{
Color color = new Color(colorInt);
return color.getRed() + color.getGreen() + color.getBlue();
}
public int ostu(int[][] gray, int w, int h)
{
int[] histData = new int[w * h];
// Calculate histogram
for (int x = 0; x < w; x++)
{
for (int y = 0; y < h; y++)
{
int red = 0xFF & gray[x][y];
histData[red]++;
}
}
// Total number of pixels
int total = w * h;
float sum = 0;
for (int t = 0; t < 256; t++)
sum += t * histData[t];
float sumB = 0;
int wB = 0;
int wF = 0;
float varMax = 0;
int threshold = 0;
for (int t = 0; t < 256; t++)
{
wB += histData[t]; // Weight Background
if (wB == 0)
continue;
wF = total - wB; // Weight Foreground
if (wF == 0)
break;
sumB += (float) (t * histData[t]);
float mB = sumB / wB; // Mean Background
float mF = (sum - sumB) / wF; // Mean Foreground
// Calculate Between Class Variance
float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);
// Check if new maximum found
if (varBetween > varMax)
{
varMax = varBetween;
threshold = t;
}
}
return threshold;
}
}
这段代码除开opencv那段是我个人编写的,其他的也是借鉴网上的源代码。如果有编写不对,或者可以修改的更好的建议请指出。
参考博客
https://blog.csdn.net/firehood_/article/details/8433077
https://blog.csdn.net/shengfn/article/details/53582694
http://pinnau.blogspot.com/2016/06/java-create-opencv-mat-from.html
https://blog.csdn.net/qianmang/article/details/79158366