Dancing link twice.
Find the maximum combination numbers in the first time.
Enumerate each node, dancing.
If the new result is not optimaze, then push it into ans.
#include
#include
#include
#include
#include
#include
using namespace std;
const int M = 200;
// exact
struct dancing {
#define dfor(c, a, b) for (int c = a[b]; c != b; c = a[c])
static const int row_size = 220, column_size = 220,
total_size = row_size*column_size;
typedef int row[row_size],
column[column_size],
total[total_size];
total l, r, u, d, in_column, in_row;
bitset<50> use;
column s;
int index, current_row, row_head, limit, mx, rn;
void init(int n, int m) {
rn = m;
limit = 0;
index = ++n;
for (int i = 0; i < n; i++) {
l[i] = (i - 1 + n) % n;
r[i] = (i + 1) % n;
u[i] = d[i] = i;
}
current_row = 0;
memset(s, 0, sizeof(s));
use = ans = bitset<50>();
mx = -1;
}
void push(int i, int j) {
i++; j++;
if (current_row < i) {
row_head = l[index] = r[index] = index;
current_row = i;
}
l[index] = l[row_head]; r[index] = row_head;
r[l[row_head]] = index; l[row_head] = index;
u[index] = u[j]; d[index] = j;
d[u[j]] = index; u[j] = index;
s[j]++;
in_row[index] = i;
in_column[index++] = j;
}
void exactly_remove(int c) {
l[r[c]] = l[c];
r[l[c]] = r[c];
dfor(i, d, c) {
dfor (j, r, i) {
u[d[j]] = u[j];
d[u[j]] = d[j];
s[in_column[j]]--;
}
}
}
void exactly_resume(int c) {
dfor(i, u, c) {
dfor(j, l, i) {
s[in_column[j]]++;
d[u[j]] = u[d[j]] = j;
}
}
r[l[c]] = l[r[c]] = c;
}
bool exactly_dance(int step = 0) {
limit = max(limit, step);
if (limit == mx) return 1;
if (!r[0]) return 0;
int has = rn-use.count();
if (!has || step+has < limit || step+has < mx) return 0;
int x = r[0];
dfor(i, r, 0) {
if (s[i] && s[i] < s[x] || !s[x]) {
x = i;
}
}
exactly_remove(x);
dfor(i, d, x) {
use[in_column[i]] = 1;
dfor(j, r, i) {
exactly_remove(in_column[j]);
}
if (exactly_dance(step + 1)) {
return 1;
}
dfor(j, l, i) {
exactly_resume(in_column[j]);
}
use[in_column[i]] = 0;
}
exactly_resume(x);
return 0;
}
#undef dfor
};
dancing dlx;
struct com {
int b, t;
void input() {
scanf("%d%d", &b, &t);
}
} c[M];
int n, m, g[M][50];
int main() {
for ( ; ~scanf("%d%d", &n, &m); ) {
memset(g, 0, sizeof(g));
dlx.init(n, m);
for (int i = 0; i < m; i++) {
c[i].input();
if (c[i].b > c[i].t) swap(c[i].b, c[i].t);
int b = c[i].b, t = c[i].t;
g[i][b] = g[i][t] = 1;
dlx.push(i, b-1);
dlx.push(i, t-1);
}
dlx.exactly_dance();
int limit = dlx.limit;
vector ans;
int ban[M] = {0};
for (int i = 0; i < m; i++) {
int tm = m;
memset(ban, 0, sizeof(int)*m);
for (int j = 0; j < m; j++) if (i != j)
if (g[j][c[i].b] || g[j][c[i].t]) {
ban[j] = 1;
tm--;
}
dlx.init(n, tm);
for (int j = 0; j < m; j++) if (!ban[j]) {
dlx.push(j, c[j].b-1);
dlx.push(j, c[j].t-1);
}
dlx.mx = limit;
dlx.exactly_dance();
if (limit != dlx.limit) ans.push_back(i+1);
}
printf("%d\n", (int)ans.size());
if (!ans.size()) puts("");
else for (int i = 0; i < ans.size(); i++)
printf("%d%c", ans[i], i < ans.size()-1? ' ': '\n');
}
return 0;
}