Iris数据集的LDA和PCA二维投影的比较

鸢尾花数据集代表3种鸢尾花(Setosa,Versicolour和Virginica),具有4个属性:萼片长度,萼片宽度,花瓣长度和花瓣宽度。

应用于此数据的主成分分析(PCA)可以识别出造成数据差异最大的属性(主要成分或特征空间中的方向)组合。在这里,我们在2个第一主成分上绘制了不同的样本。

线性判别分析(LDA)试图识别出类别之间差异最大的属性。尤其是,与PCA相比,LDA是使用已知类别标签的受监督方法。

import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import pandas as pd
iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names
pd.DataFrame(X, columns=iris.feature_names).head()

Iris数据集的LDA和PCA二维投影的比较_第1张图片

target_names
>>>array(['setosa', 'versicolor', 'virginica'], dtype=')
pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)
X_r2 = lda.fit(X, y).transform(X)
# Percentage of variance explained for each components
# 各组成部分解释的差异百分比
print('explained variance ratio (first two components): %s'
      % str(pca.explained_variance_ratio_))
>>>explained variance ratio (first two components): [0.92461872 0.05306648]
plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2

for color, i, target_name in zip(colors, [0, 1, 2], target_names):
    plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw,
                label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA of IRIS dataset')

Iris数据集的LDA和PCA二维投影的比较_第2张图片

plt.figure()
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
    plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color,
                label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA of IRIS dataset')

plt.show()

Iris数据集的LDA和PCA二维投影的比较_第3张图片

你可能感兴趣的:(Iris数据集的LDA和PCA二维投影的比较)