PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。
要从文件加载图像,使用 open() 函数, 在 Image 模块:
>>> from PIL import Image >>> im = Image.open("lena.ppm")
加载成功将返回一个 Image 对象。 你现在可以使用示例属性检查文件内容:
>>> from __future__ import print_function >>> print(im.format, im.size, im.mode) PPM (512, 512) RGB
format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。
如果文件打开错误,返回 IOError 错误。
只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:
>>> im.show()
注解
标准的 show() 效率并不高,它需要保存图像到临时文件然后通过 xv 显示图像。你需要先安装 xv ,显示图像有助于调试和测试。
下面的部分提供了这个库其他函数的概览。
PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。
要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。
from __future__ import print_function import os, sys from PIL import Image for infile in sys.argv[1:]: f, e = os.path.splitext(infile) outfile = f + ".jpg" if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print("cannot convert", infile)
save() 方法的第二个参数可以指定文件格式,如果你使用非标准的扩展名你必须这样做:
from __future__ import print_function import os, sys from PIL import Image size = (128, 128) for infile in sys.argv[1:]: outfile = os.path.splitext(infile)[0] + ".thumbnail" if infile != outfile: try: im = Image.open(infile) im.thumbnail(size) im.save(outfile, "JPEG") except IOError: print("cannot create thumbnail for", infile)
很重要的一点是这个库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。下面是一个简单的脚本用来快速验证大量图片。
from __future__ import print_function import sys from PIL import Image for infile in sys.argv[1:]: try: with Image.open(infile) as im: print(infile, im.format, "%dx%d" % im.size, im.mode) except IOError: pass
Image 类包含的方法允许你操作图像部分选区。使用:py:meth:~PIL.Image.Image.crop 方法获取图像的一个子矩形选区。
box = (100, 100, 400, 400) region = im.crop(box)
矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 300x300 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。
region = region.transpose(Image.ROTATE_180) im.paste(region, box)
当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色(参看下面的 颜色变换 部分),下面是一个例子:
def roll(image, delta): "Roll an image sideways" xsize, ysize = image.size delta = delta % xsize if delta == 0: return image part1 = image.crop((0, 0, delta, ysize)) part2 = image.crop((delta, 0, xsize, ysize)) image.paste(part2, (0, 0, xsize-delta, ysize)) image.paste(part1, (xsize-delta, 0, xsize, ysize)) return image
For more advanced tricks, the paste method can also take a transparency mask as an optional argument. In this mask, the value 255 indicates that the pasted image is opaque in that position (that is, the pasted image should be used as is). The value 0 means that the pasted image is completely transparent. Values in-between indicate different levels of transparency.
The Python Imaging Library also allows you to work with the individual bands of an multi-band image, such as an RGB image. The split method creates a set of new images, each containing one band from the original multi-band image. The merge function takes a mode and a tuple of images, and combines them into a new image. The following sample swaps the three bands of an RGB image:
r, g, b = im.split() im = Image.merge("RGB", (b, g, r))
Note that for a single-band image, split() returns the image itself. To work with individual color bands, you may want to convert the image to “RGB” first.
The PIL.Image.Image class contains methods to resize() and rotate() an image. The former takes a tuple giving the new size, the latter the angle in degrees counter-clockwise.
out = im.resize((128, 128)) out = im.rotate(45) # degrees counter-clockwise
To rotate the image in 90 degree steps, you can either use the rotate() method or the transpose() method. The latter can also be used to flip an image around its horizontal or vertical axis.
out = im.transpose(Image.FLIP_LEFT_RIGHT) out = im.transpose(Image.FLIP_TOP_BOTTOM) out = im.transpose(Image.ROTATE_90) out = im.transpose(Image.ROTATE_180) out = im.transpose(Image.ROTATE_270)
There’s no difference in performance or result between transpose(ROTATE) and corresponding rotate() operations.
A more general form of image transformations can be carried out via the transform() method.
The Python Imaging Library allows you to convert images between different pixel representations using the convert() method.
im = Image.open("lena.ppm").convert("L")
The library supports transformations between each supported mode and the “L” and “RGB” modes. To convert between other modes, you may have to use an intermediate image (typically an “RGB” image).
The Python Imaging Library provides a number of methods and modules that can be used to enhance images.
The ImageFilter module contains a number of pre-defined enhancement filters that can be used with the filter() method.
应用过滤器
from PIL import ImageFilter out = im.filter(ImageFilter.DETAIL)
The point() method can be used to translate the pixel values of an image (e.g. image contrast manipulation). In most cases, a function object expecting one argument can be passed to the this method. Each pixel is processed according to that function:
应用点操作
# multiply each pixel by 1.2 out = im.point(lambda i: i * 1.2)
Using the above technique, you can quickly apply any simple expression to an image. You can also combine the point() and paste() methods to selectively modify an image:
处理个别bands
# split the image into individual bands source = im.split() R, G, B = 0, 1, 2 # select regions where red is less than 100 mask = source[R].point(lambda i: i < 100 and 255) # process the green band out = source[G].point(lambda i: i * 0.7) # paste the processed band back, but only where red was < 100 source[G].paste(out, None, mask) # build a new multiband image im = Image.merge(im.mode, source)
Note the syntax used to create the mask:
imout = im.point(lambda i: expression and 255)
Python only evaluates the portion of a logical expression as is necessary to determine the outcome, and returns the last value examined as the result of the expression. So if the expression above is false (0), Python does not look at the second operand, and thus returns 0. Otherwise, it returns 255.
For more advanced image enhancement, you can use the classes in the ImageEnhance module. Once created from an image, an enhancement object can be used to quickly try out different settings.
You can adjust contrast, brightness, color balance and sharpness in this way.
增强图形
from PIL import ImageEnhance enh = ImageEnhance.Contrast(im) enh.enhance(1.3).show("30% more contrast")
The Python Imaging Library contains some basic support for image sequences (also called animation formats). Supported sequence formats include FLI/FLC, GIF, and a few experimental formats. TIFF files can also contain more than one frame.
When you open a sequence file, PIL automatically loads the first frame in the sequence. You can use the seek and tell methods to move between different frames:
from PIL import Image im = Image.open("animation.gif") im.seek(1) # skip to the second frame try: while 1: im.seek(im.tell()+1) # do something to im except EOFError: pass # end of sequence
As seen in this example, you’ll get an EOFError exception when the sequence ends.
Note that most drivers in the current version of the library only allow you to seek to the next frame (as in the above example). To rewind the file, you may have to reopen it.
The following iterator class lets you to use the for-statement to loop over the sequence:
class ImageSequence: def __init__(self, im): self.im = im def __getitem__(self, ix): try: if ix: self.im.seek(ix) return self.im except EOFError: raise IndexError # end of sequence for frame in ImageSequence(im): # ...do something to frame...
The Python Imaging Library includes functions to print images, text and graphics on Postscript printers. Here’s a simple example:
from PIL import Image from PIL import PSDraw im = Image.open("lena.ppm") title = "lena" box = (1*72, 2*72, 7*72, 10*72) # in points ps = PSDraw.PSDraw() # default is sys.stdout ps.begin_document(title) # draw the image (75 dpi) ps.image(box, im, 75) ps.rectangle(box) # draw centered title ps.setfont("HelveticaNarrow-Bold", 36) w, h, b = ps.textsize(title) ps.text((4*72-w/2, 1*72-h), title) ps.end_document()
As described earlier, the open() function of the Image module is used to open an image file. In most cases, you simply pass it the filename as an argument:
im = Image.open("lena.ppm")
If everything goes well, the result is an PIL.Image.Image object. Otherwise, an IOError exception is raised.
You can use a file-like object instead of the filename. The object must implement read(), seek() and tell() methods, and be opened in binary mode.
fp = open("lena.ppm", "rb") im = Image.open(fp)
To read an image from string data, use the StringIO class:
import StringIO im = Image.open(StringIO.StringIO(buffer))
Note that the library rewinds the file (using seek(0)) before reading the image header. In addition, seek will also be used when the image data is read (by the load method). If the image file is embedded in a larger file, such as a tar file, you can use the ContainerIO or TarIO modules to access it.
from PIL import TarIO fp = TarIO.TarIO("Imaging.tar", "Imaging/test/lena.ppm") im = Image.open(fp)
Some decoders allow you to manipulate the image while reading it from a file. This can often be used to speed up decoding when creating thumbnails (when speed is usually more important than quality) and printing to a monochrome laser printer (when only a greyscale version of the image is needed).
The draft() method manipulates an opened but not yet loaded image so it as closely as possible matches the given mode and size. This is done by reconfiguring the image decoder.
from __future__ import print_function im = Image.open(file) print("original =", im.mode, im.size) im.draft("L", (100, 100)) print("draft =", im.mode, im.size)
This prints something like:
original = RGB (512, 512) draft = L (128, 128)
Note that the resulting image may not exactly match the requested mode and size. To make sure that the image is not larger than the given size, use the thumbnail method instead.
https://pillow-cn.readthedocs.io/zh_CN/latest/handbook/tutorial.html