spfa的SLF 和 LLL优化算法

   一. spfa的SLF优化,就是双向队列优化,在spfa压入队列时,判断要压入队首还是队尾。这个优化可以优化15%~20%。

   二. spfa的LLL优化,就是记录现在队列中元素所代表值的平均值,和要压入元素的值相比较,如果大于平均值,直接压入对列尾部,LLL优化+SLF优化可以优化大概50%。

  我们以一道判负环的题为例子,来讲解一下。


Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 53294   Accepted: 19856

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer,  FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively:  NM, and  W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between  S and  E that requires  T seconds to traverse. Two fields might be connected by more than one path. 
Lines  M+2.. M+ W+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from  S to  E that also moves the traveler back  T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

USACO 2006 December Gold

首先 :我们用的是普通spfa。跑完程序是141ms

#include
#include
#include
#include
using namespace std;
#define inf 0x3f3f3f3f
struct s1{
   int to;
   int val;
   int next;
}a[10000];
int head[10000];
int dis[10000];
int book[10000];
int cnt;
void add(int u,int v,int w)
{
    a[++cnt].to=v;
    a[cnt].val=w;
    a[cnt].next=head[u];
    head[u]=cnt;
}
int main()
{
    int F;
    scanf("%d",&F);
    while(F--)
    {
        int n,m,w;
        cnt=0;
        scanf("%d%d%d",&n,&m,&w);
        memset(book,0,sizeof(book));
        memset(head,-1,sizeof(head));
        memset(a,0,sizeof(a));
        for(int i=0;iq;
        memset(dis,inf,sizeof(dis));
        dis[1]=0;
        book[1]=1;

        q.push(1);
        int cn[10000];
        int flag=0;
        memset(cn,0,sizeof(cn));
        cn[1]=1;
        while(!q.empty())
        {
            int p=q.front();
            q.pop();
            book[p]=0;
            for(int i=head[p];i!=-1;i=a[i].next)
            {
                if(dis[a[i].to]>dis[p]+a[i].val)
                {
                    dis[a[i].to]=dis[p]+a[i].val;
                    if(book[a[i].to]==0)
                    {
                        book[a[i].to]=1;
                        cn[a[i].to]++;
                        if(cn[a[i].to]>=n)
                        {
                            flag=1;
                            break;
                        }
                        q.push(a[i].to);
                    }
                }
            }
            if(flag==1)
                break;
        }
        if(flag==1)
            printf("YES\n");
        else
            printf("NO\n");
    }
}

然后 我们加上 SLF优化 ,跑完程序是94ms。

#include
#include
#include
#include
using namespace std;
#define inf 0x3f3f3f3f
struct s1{
   int to;
   int val;
   int next;
}a[10000];
int head[10000];
int dis[10000];
int book[10000];
int cnt;
void add(int u,int v,int w)
{
    a[++cnt].to=v;
    a[cnt].val=w;
    a[cnt].next=head[u];
    head[u]=cnt;
}
int main()
{
    int F;
    scanf("%d",&F);
    while(F--)
    {
        int n,m,w;
        cnt=0;
        scanf("%d%d%d",&n,&m,&w);
        memset(book,0,sizeof(book));
        memset(head,-1,sizeof(head));
        memset(a,0,sizeof(a));
        for(int i=0;iq;
        memset(dis,inf,sizeof(dis));
        dis[1]=0;
        book[1]=1;

        q.push_back(1);
        int cn[10000];
        int flag=0;
        memset(cn,0,sizeof(cn));
        cn[1]=1;
        while(!q.empty())
        {
            int p=q.front();
            q.pop_front();
            book[p]=0;
            for(int i=head[p];i!=-1;i=a[i].next)
            {
                if(dis[a[i].to]>dis[p]+a[i].val)
                {
                    dis[a[i].to]=dis[p]+a[i].val;
                    if(book[a[i].to]==0)
                    {
                        book[a[i].to]=1;
                        cn[a[i].to]++;
                        if(cn[a[i].to]>=n)
                        {
                            flag=1;
                            break;
                        }
                        if(!q.empty()&&dis[a[i].to]

最后,我们用SLF加上LLL优化,跑完程序,是47ms。
#include
#include
#include
#include
using namespace std;
#define inf 0x3f3f3f3f
struct s1{
   int to;
   int val;
   int next;
}a[10000];
int head[10000];
int dis[10000];
int book[10000];
int cnt;
void add(int u,int v,int w)
{
    a[++cnt].to=v;
    a[cnt].val=w;
    a[cnt].next=head[u];
    head[u]=cnt;
}
int main()
{
    int F;
    scanf("%d",&F);
    while(F--)
    {
        int n,m,w;
        cnt=0;
        scanf("%d%d%d",&n,&m,&w);
        memset(book,0,sizeof(book));
        memset(head,-1,sizeof(head));
        memset(a,0,sizeof(a));
        for(int i=0;iq;
        memset(dis,inf,sizeof(dis));
        dis[1]=0;
        book[1]=1;

        q.push_back(1);
        int cn[10000];
        int flag=0;
        memset(cn,0,sizeof(cn));
        cn[1]=1;
        long long sum=0;
        int len=1;
        while(!q.empty())
        {
            int p=q.front();
            q.pop_front();

            if(dis[p]*len>sum)  //LLL优化
            {
                q.push_back(p);
                continue;
            }
            sum-=dis[p];
            book[p]=0;
            len--;
            for(int i=head[p];i!=-1;i=a[i].next)
            {
                if(dis[a[i].to]>dis[p]+a[i].val)
                {
                    dis[a[i].to]=dis[p]+a[i].val;
                    if(book[a[i].to]==0)
                    {
                        book[a[i].to]=1;
                        cn[a[i].to]++;
                        if(cn[a[i].to]>=n)
                        {
                            flag=1;
                            break;
                        }
                        if(!q.empty()&&dis[a[i].to]




你可能感兴趣的:(SPFA判负环)