最小生成树之Kruskal(克鲁斯卡尔)算法

克鲁斯卡尔算法:

      是在剩下的所有未选取的边中,找最小边,如果和已选取的边构成回路,则放弃,选取次小边。

先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,

若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,

而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。
时间复杂度为为O(e^2), 使用并查集优化后复杂度为 O(eloge),与网中的边数有关,适用于求边稀疏的网的最小生成树。


克鲁斯卡尔算法的时间复杂度为O(eloge)(e为网中边的数目),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树。
克鲁斯卡尔算法从另一途径求网的最小生成树。假设连通网N=(V,{E}),

你可能感兴趣的:(数据结构,算法,C,&&,C++)