ES是个什么东西?
Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elasticsearch 并不仅仅是 Lucene 那么简单,它不仅包括了全文搜索功能,还可以进行以下工作:
- 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。
- 实时分析的分布式搜索引擎。
- 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。
**基本概念**
Elasticsearch的文件存储,Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式。
索引(Index)
ES将数据存储于一个或多个索引中,索引是具有类似特性的文档的集合。类比传统的关系型数据库领域来说,索引相当于SQL中的一个数据库,或者一个数据存储方案(schema)。索引由其名称(必须为全小写字符)进行标识,并通过引用此名称完成文档的创建、搜索、更新及删除操作。一个ES集群中可以按需创建任意数目的索引。
类型(Type)
类型是索引内部的逻辑分区(category/partition),然而其意义完全取决于用户需求。因此,一个索引内部可定义一个或多个类型(type)。一般来说,类型就是为那些拥有相同的域的文档做的预定义。例如,在索引中,可以定义一个用于存储用户数据的类型,一个存储日志数据的类型,以及一个存储评论数据的类型。类比传统的关系型数据库领域来说,类型相当于“表”
文档(Document)
文档是索引和搜索的原子单位,它是包含了一个或多个域(Field)的容器,基于JSON格式进行表示。文档由一个或多个域组成,每个域拥有一个名字及一个或多个值,有多个值的域通常称为“多值域”。每个文档可以存储不同的域集,但同一类型下的文档至应该有某种程度上的相似之处。
简易的将Elasticsearch和关系型数据术语对照表:
关系数据库 ⇒ 数据库 ⇒ 表 ⇒ 行 ⇒ 列(Columns) Elasticsearch ⇒ 索引(Index) ⇒ 类型(type) ⇒ 文档(Docments) ⇒ 字段(Fields)
分布式相关概念
节点(Node)
一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同cluster.name配置的节点组成, 它们共同承担数据和负载的压力。
ES集群中的节点有三种不同的类型:
- 主节点:负责管理集群范围内的所有变更,例如增加、删除索引,或者增加、删除节点等。 主节点并不需要涉及到文档级别的变更和搜索等操作。可以通过属性node.master进行设置。
- 数据节点:存储数据和其对应的倒排索引。默认每一个节点都是数据节点(包括主节点),可以通过node.data属性进行设置。
- 协调节点:如果node.master和node.data属性均为false,则此节点称为协调节点,用来响应客户请求,均衡每个节点的负载。
分片(Shard)
一个索引中的数据保存在多个分片中,相当于水平分表。一个分片便是一个Lucene 的实例,它本身就是一个完整的搜索引擎。我们的文档被存储和索引到分片内,但是应用程序是直接与索引而不是与分片进行交互。
ES实际上就是利用分片来实现分布式。分片是数据的容器,文档保存在分片内,分片又被分配到集群内的各个节点里。 当你的集群规模扩大或者缩小时, ES会自动的在各节点中迁移分片,使得数据仍然均匀分布在集群里。
一个分片可以是
主分片
或者
副本分片
。 索引内任意一个文档都归属于一个主分片,所以主分片的数目决定着索引能够保存的最大数据量。一个副本分片只是一个主分片的拷贝。
集群管理
Zen Discovery(同步集群信息)
Zen Discovery 从功能上可以分为两部分,第一部分是集群刚启动时的选主,或者是新加入集群的节点发现当前集群的Master。第二部分是选主完成后,Master 和 Folower 的相互探活。
Gossip协议
每隔一段时间,每个节点都会随机选择几个节点发送Gossip消息,其他节点会再次随机选择其他几个节点接力发送消息。这样一段时间过后,整个集群都能收到这条消息。
ES的 Gossip 的模式
- 发送方会向 seedNodes 和曾经ping 过自己的节点发送 ping 请求,发送方包含了本节点的信息
- 接收方会向发送方返回所有 ping 过自己的节点信息
选主
- 基于节点发现的集群信息找到集群里已有的 master 节点和 candidate 节点
- 如果当前集群没有 master 节点,并且自己与足够的 candidate 保持连接,则从 candidate 中选出 master,否则返回 null。选举算法是从所有candidate中选取最大的候选节点排序结果值的那个。排序实现如下:
public static int compare(MasterCandidate c1, MasterCandidate c2) {
int ret = Long.compare(c2.clusterStateVersion, c1.clusterStateVersion);
if (ret == 0) {
ret = compareNodes(c1.getNode(), c2.getNode());
}
return ret;
}
取最大集群状态版本号(每次集群状态变更,版本号也会递增),相同则取节点ID(节点ID为64位UUID值)。
- 如果集群中有 master 一个或者多个节点,选择 id 较小的节点作为 master。
- 如果master 是当前节点,则等待minimumMasterNodes() - 1个节点向自己发送 joinRequest,如果超时则重新开始innerJoinCluster过程。
- 如果master 不是当前节点,则向 master 节点发送 joinRequest,阻塞等待,master 会在收集到足够的选票后统一回复。
ES的写和读
写操作(Write):针对文档的CRUD操作
索引新文档(Create)
当用户向一个节点提交了一个索引新文档的请求,节点会计算新文档应该加入到哪个分片(shard)中。每个节点都存储有每个分片存储在哪个节点的信息,因此协调节点会将请求发送给对应的节点。注意这个请求会发送给主分片,等主分片完成索引,会并行将请求发送到其所有副本分片,保证每个分片都持有最新数据
。
每个Index由多个Shard组成,每个Shard有一个主节点和多个副本节点,副本个数可配。但每次写入的时候,写入请求会先根据_routing规则选择发给哪个Shard,Index Request中可以设置使用哪个Filed的值作为路由参数,如果没有设置,则使用Mapping中的配置,如果mapping中也没有配置,则使用_id作为路由参数,然后通过_routing的Hash值选择出Shard(在OperationRouting类中),最后从集群的Meta中找出出该Shard的Primary节点
。
每次写入新文档时,都会先写入内存中,并将这一操作写入一个translog文件(
transaction log
)中,此时如果执行搜索操作,这个新文档还不能被索引到。
ES会每隔1秒时间(这个时间可以修改)进行一次刷新操作(refresh),此时在这1秒时间内写入内存的新文档都会被写入一个文件系统缓存(filesystem cache)中,并构成一个分段(segment)。此时这个segment里的文档可以被搜索到,但是尚未写入硬盘,即如果此时发生断电,则这些文档可能会丢失。
由于每一秒就会生成一个新的segment,很快将会有大量的segment。对于一个分片进行查询请求,将会轮流查询分片中的所有segment,这将降低搜索的效率。因此ES会自动启动合并segment的工作,将一部分相似大小的segment合并成一个新的大segment。合并的过程实际上是创建了一个新的segment,当新segment被写入磁盘,所有被合并的旧segment被清除。
更新(Update)和删除(Delete)文档
ES的索引是不能修改的,因此更新和删除操作并不是直接在原索引上直接执行。
每一个磁盘上的segment都会维护一个del文件,用来记录被删除的文件。每当用户提出一个删除请求,文档并没有被真正删除,索引也没有发生改变,而是在del文件中标记该文档已被删除。因此,被删除的文档依然可以被检索到,只是在返回检索结果时被过滤掉了。每次在启动segment合并工作时,那些被标记为删除的文档才会被真正删除。
更新文档会首先查找原文档,得到该文档的版本号。然后将修改后的文档写入内存,此过程与写入一个新文档相同。同时,旧版本文档被标记为删除,同理,该文档可以被搜索到,只是最终被过滤掉。
读操作(Read):查询过程
查询的过程大体上分为查询(query)和取回(fetch)两个阶段。
这个节点的任务是广播查询请求到所有相关分片,并将它们的响应整合成全局排序后的结果集合,这个结果集合会返回给客户端。
查询阶段包含以下三个步骤:
客户端发送一个
search
请求到
Node 3
,
Node 3
会创建一个大小为
from + size
的空优先队列。
Node 3
将查询请求转发到索引的每个主分片或副本分片中。每个分片在本地执行查询并添加结果到大小为
from + size
的本地有序优先队列中。
每个分片返回各自优先队列中所有文档的 ID 和排序值给协调节点,也就是
Node 3
,它合并这些值到自己的优先队列中来产生一个全局排序后的结果列表。
- 查询阶段
当一个节点接收到一个搜索请求,则这个节点就变成了协调节点。
取回阶段
查询过程得到的是一个排序结果,标记出哪些文档是符合搜索要求的,此时仍然需要获取这些文档返回客户端。
协调节点会确定实际需要返回的文档,并向含有该文档的分片发送get请求;分片获取文档返回给协调节点;协调节点将结果返回给客户端。
Elasticsearch搜索是如何做到快的
Elasticsearch索引的精髓:一切设计都是为了提高搜索的性能。快是比较相对的,Elasticsearch比关系型数据库快,为什么呢?
数据插到Elasticsearch的同时,Elasticsearch还默默1为这些字段建立索引--倒排索引,那是倒排索引是什么呢?
倒排索引(Inverted Index)
每一个文档都对应一个ID。倒排索引会按照指定语法对每一个文档进行分词,然后维护一张表,列举所有文档中出现的terms以及它们出现的文档ID和出现频率。搜索时同样会对关键词进行同样的分词分析,然后查表得到结果。
ES里面的倒排索引
Term Dictionary
Elasticsearch为了能快速找到某个term,将所有的term排个序,二分法查找term,logN的查找效率,就像通过字典查找一样,这就是Term Dictionary。现在再看起来,似乎和传统数据库通过B-Tree的方式类似啊,为什么说比B-Tree的查询快呢?
Term Index
B-Tree通过减少磁盘寻道次数来提高查询性能,Elasticsearch也是采用同样的思路,直接通过内存查找term,不读磁盘,但是如果term太多,term dictionary也会很大,放内存不现实,于是有了Term Index,就像字典里的索引页一样,A开头的有哪些term,分别在哪页,可以理解term index是一颗树:
这棵树不会包含所有的term,它包含的是term的一些前缀。通过term index可以快速地定位到term dictionary的某个offset,然后从这个位置再往后顺序查找。
所以term index不需要存下所有的term,而仅仅是他们的一些前缀与Term Dictionary的block之间的映射关系,再结合FST(Finite State Transducers)的压缩技术,可以使term index缓存到内存中。从term index查到对应的term dictionary的block位置之后,再去磁盘上找term,大大减少了磁盘随机读的次数。
压缩技巧
Posting List
|
Term | Posting List | | -- |:----:| | Kate |
1 | |
John |
2 | |
Bill |
3 |
Elasticsearch分别为每个field都建立了一个倒排索引,Kate, John, 24, Female这些叫term,而[1,2]就是Posting List。Posting list就是一个int的数组,存储了所有符合某个term的文档id。
posting list压缩技巧--增量编码压缩,将大数变小数,按字节存储。
lasticsearch要求posting list是有序的(为了提高搜索的性能,再任性的要求也得满足),这样做的一个好处是方便压缩,看下面这个图例:
原理就是通过增量,将原来的大数变成小数仅存储增量值,再精打细算按bit排好队,最后通过字节存储,而不是大大咧咧的尽管是2也是用int(4个字节)来存储。
Roaring bitmaps
说到Roaring bitmaps,就必须先从bitmap说起。Bitmap是一种数据结构,假设有某个posting list:
[1,3,4,7,10]
对应的bitmap就是:
[1,0,1,1,0,0,1,0,0,1]
Bitmap的缺点是存储空间随着文档个数线性增长,Roaring bitmaps需要打破这个魔咒就一定要用到某些指数特性:
将posting list按照65535为界限分块,比如第一块所包含的文档id范围在0~65535之间,第二块的id范围是65536~131071,以此类推。再用<商,余数>的组合表示每一组id,这样每组里的id范围都在0~65535内了,剩下的就好办了,既然每组id不会变得无限大,那么我们就可以通过最有效的方式对这里的id存储。
联合索引
上面说了半天都是单field索引,如果多个field索引的联合查询,倒排索引如何满足快速查询的要求呢?
- 利用跳表(Skip list)的数据结构快速做“与”运算,或者
- 利用上面提到的bitset按位“与”
先看看跳表的数据结构:
这基本上就是跳表的核心思想,其实也是一种通过“空间来换取时间”的一个算法,通过在每个节点中增加了向前的指针,从而提升查找的效率。
好的架构总是简单的