【caffe】c++中使用训练好的caffe模型,classification工程生成动态链接库——【caffe学习六】

除了在opencv dnn中使用训练好的model,还可以直接通过classification.exe去查看单张图的训练结果。

但是我在使用opencv dnn的时候,发现里面输出的结果和classification.exe并不一样,一时找不到原因,于是还是考虑将classification.cpp写成库供别的程序调用。


1.配置环境。新建工程切换到release x64下

①项目属性中——配置属性——C/C++——常规:

D:\caffe\scripts\build\include;
D:\caffe\scripts\build;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\include\boost-1_61;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\include;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\include\opencv;
D:\caffe\include;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\Include;%(AdditionalIncludeDirectories)


②项目属性中——配置属性——C/C++——预处理器

WIN32;
_WINDOWS;
NDEBUG;
CAFFE_VERSION=1.0.0;
BOOST_ALL_NO_LIB;
USE_LMDB;
USE_LEVELDB;
USE_CUDNN;
USE_OPENCV;
CMAKE_WINDOWS_BUILD;
GLOG_NO_ABBREVIATED_SEVERITIES;
GOOGLE_GLOG_DLL_DECL=__declspec(dllimport);
GOOGLE_GLOG_DLL_DECL_FOR_UNITTESTS=__declspec(dllimport);
H5_BUILT_AS_DYNAMIC_LIB=1;
CMAKE_INTDIR="Release";
%(PreprocessorDefinitions)

③项目属性中——配置属性——链接器——输入——附加依赖项:

D:\caffe\scripts\build\lib\Release\caffe.lib;
D:\caffe\scripts\build\lib\Release\caffeproto.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\boost_system-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\boost_thread-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\boost_filesystem-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\boost_chrono-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\boost_date_time-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\boost_atomic-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\glog.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\Lib\gflags.lib;
shlwapi.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\libprotobuf.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\caffehdf5_hl.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\caffehdf5.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\cmake\..\lib\caffezlib.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\lmdb.lib;
ntdll.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\leveldb.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\cmake\..\lib\boost_date_time-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\cmake\..\lib\boost_filesystem-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\cmake\..\lib\boost_system-vc140-mt-1_61.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\snappy_static.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\caffezlib.lib;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cudart.lib;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\curand.lib;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cublas.lib;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cublas_device.lib;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cudnn.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\x64\vc14\lib\opencv_highgui310.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\x64\vc14\lib\opencv_imgcodecs310.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\x64\vc14\lib\opencv_imgproc310.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\x64\vc14\lib\opencv_core310.lib;
C:\Users\machenike\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib\libopenblas.dll.a;
kernel32.lib;
user32.lib;
gdi32.lib;
winspool.lib;
shell32.lib;
ole32.lib;
oleaut32.lib;
uuid.lib;
comdlg32.lib;
advapi32.lib


项目属性中——配置属性——链接器——输入——忽略特定默认库

%(IgnoreSpecificDefaultLibraries)

⑤复制D:\caffe\scripts\build\tools\Release所有的dll到工程Release下


以上①②③④其实都可以在D:\caffe\scripts\build\Caffe.sln中找到


⑥复制classification需要的5个文件,分别是deploy.prototxt  network.caffemodel  mean.binaryproto labels.txt  img.jpg到工程下(你的不一定是这个文件名)


2.复制源码。

从Caffe.sln中可以找到classification.cpp的源码,全选复制修改输入,修改后如下

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair Prediction;

class Classifier {
public:
	Classifier(const string& model_file,
		const string& trained_file,
		const string& mean_file,
		const string& label_file);

	std::vector Classify(const cv::Mat& img, int N = 5);

private:
	void SetMean(const string& mean_file);

	std::vector Predict(const cv::Mat& img);

	void WrapInputLayer(std::vector* input_channels);

	void Preprocess(const cv::Mat& img,
		std::vector* input_channels);

private:
	shared_ptr > net_;
	cv::Size input_geometry_;
	int num_channels_;
	cv::Mat mean_;
	std::vector labels_;
};

Classifier::Classifier(const string& model_file,
	const string& trained_file,
	const string& mean_file,
	const string& label_file) {
#ifdef CPU_ONLY
	Caffe::set_mode(Caffe::CPU);
#else
	Caffe::set_mode(Caffe::GPU);
#endif

	/* Load the network. */
	net_.reset(new Net(model_file, TEST));
	net_->CopyTrainedLayersFrom(trained_file);

	CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
	CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

	Blob* input_layer = net_->input_blobs()[0];
	num_channels_ = input_layer->channels();
	CHECK(num_channels_ == 3 || num_channels_ == 1)
		<< "Input layer should have 1 or 3 channels.";
	input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

	/* Load the binaryproto mean file. */
	SetMean(mean_file);

	/* Load labels. */
	std::ifstream labels(label_file.c_str());
	CHECK(labels) << "Unable to open labels file " << label_file;
	string line;
	while (std::getline(labels, line))
		labels_.push_back(string(line));

	Blob* output_layer = net_->output_blobs()[0];
	CHECK_EQ(labels_.size(), output_layer->channels())
		<< "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair& lhs,
	const std::pair& rhs) {
	return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector Argmax(const std::vector& v, int N) {
	std::vector > pairs;
	for (size_t i = 0; i < v.size(); ++i)
		pairs.push_back(std::make_pair(v[i], static_cast(i)));
	std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

	std::vector result;
	for (int i = 0; i < N; ++i)
		result.push_back(pairs[i].second);
	return result;
}

/* Return the top N predictions. */
std::vector Classifier::Classify(const cv::Mat& img, int N) {
	std::vector output = Predict(img);

	N = std::min(labels_.size(), N);
	std::vector maxN = Argmax(output, N);
	std::vector predictions;
	for (int i = 0; i < N; ++i) {
		int idx = maxN[i];
		predictions.push_back(std::make_pair(labels_[idx], output[idx]));
	}

	return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
	BlobProto blob_proto;
	ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

	/* Convert from BlobProto to Blob */
	Blob mean_blob;
	mean_blob.FromProto(blob_proto);
	CHECK_EQ(mean_blob.channels(), num_channels_)
		<< "Number of channels of mean file doesn't match input layer.";

	/* The format of the mean file is planar 32-bit float BGR or grayscale. */
	std::vector channels;
	float* data = mean_blob.mutable_cpu_data();
	for (int i = 0; i < num_channels_; ++i) {
		/* Extract an individual channel. */
		cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
		channels.push_back(channel);
		data += mean_blob.height() * mean_blob.width();
	}

	/* Merge the separate channels into a single image. */
	cv::Mat mean;
	cv::merge(channels, mean);

	/* Compute the global mean pixel value and create a mean image
	* filled with this value. */
	cv::Scalar channel_mean = cv::mean(mean);
	mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector Classifier::Predict(const cv::Mat& img) {
	Blob* input_layer = net_->input_blobs()[0];
	input_layer->Reshape(1, num_channels_,
		input_geometry_.height, input_geometry_.width);
	/* Forward dimension change to all layers. */
	net_->Reshape();

	std::vector input_channels;
	WrapInputLayer(&input_channels);

	Preprocess(img, &input_channels);

	net_->Forward();

	/* Copy the output layer to a std::vector */
	Blob* output_layer = net_->output_blobs()[0];
	const float* begin = output_layer->cpu_data();
	const float* end = begin + output_layer->channels();
	return std::vector(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector* input_channels) {
	Blob* input_layer = net_->input_blobs()[0];

	int width = input_layer->width();
	int height = input_layer->height();
	float* input_data = input_layer->mutable_cpu_data();
	for (int i = 0; i < input_layer->channels(); ++i) {
		cv::Mat channel(height, width, CV_32FC1, input_data);
		input_channels->push_back(channel);
		input_data += width * height;
	}
}

void Classifier::Preprocess(const cv::Mat& img,
	std::vector* input_channels) {
	/* Convert the input image to the input image format of the network. */
	cv::Mat sample;
	if (img.channels() == 3 && num_channels_ == 1)
		cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
	else if (img.channels() == 4 && num_channels_ == 1)
		cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
	else if (img.channels() == 4 && num_channels_ == 3)
		cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
	else if (img.channels() == 1 && num_channels_ == 3)
		cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
	else
		sample = img;

	cv::Mat sample_resized;
	if (sample.size() != input_geometry_)
		cv::resize(sample, sample_resized, input_geometry_);
	else
		sample_resized = sample;

	cv::Mat sample_float;
	if (num_channels_ == 3)
		sample_resized.convertTo(sample_float, CV_32FC3);
	else
		sample_resized.convertTo(sample_float, CV_32FC1);

	cv::Mat sample_normalized;
	cv::subtract(sample_float, mean_, sample_normalized);

	/* This operation will write the separate BGR planes directly to the
	* input layer of the network because it is wrapped by the cv::Mat
	* objects in input_channels. */
	cv::split(sample_normalized, *input_channels);

	CHECK(reinterpret_cast(input_channels->at(0).data)
		== net_->input_blobs()[0]->cpu_data())
		<< "Input channels are not wrapping the input layer of the network.";
}

int main() 
{
	::google::InitGoogleLogging("init");

	string model_file = "bvlc_googlenet_iter_5000.prototxt";
	string trained_file = "bvlc_googlenet_iter_5000.caffemodel";
	string mean_file = "imagenet_mean.binaryproto";
	string label_file = "synset_words.txt";
	Classifier classifier(model_file, trained_file, mean_file, label_file);

	string file = "test/(1).png";

	std::cout << "---------- Prediction for "
		<< file << " ----------" << std::endl;

	cv::Mat img = cv::imread(file, -1);
	CHECK(!img.empty()) << "Unable to decode image " << file;
	std::vector predictions = classifier.Classify(img);

	/* Print the top N predictions. */
	for (size_t i = 0; i < predictions.size(); ++i) {
		Prediction p = predictions[i];
		std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
			<< p.first << "\"" << std::endl;
	}
}


3.运行结果

【caffe】c++中使用训练好的caffe模型,classification工程生成动态链接库——【caffe学习六】_第1张图片

4.写成动态链接库供别的程序调用。

因为我分4类,一般都是直接返回相似度最大的那类,但是我还是想看以下别的类的信息,所以把每一类的相似度都返回。

于是修改上面源码为:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair Prediction;


class Classifier {
public:
	Classifier();
	Classifier(const string& model_file,
		const string& trained_file,
		const string& mean_file,
		const string& label_file);

	void ClassifierInit(const string& model_file,
		const string& trained_file,
		const string& mean_file,
		const string& label_file);

	std::vector Classify(const cv::Mat& img, int N = 5);

private:
	void SetMean(const string& mean_file);

	std::vector Predict(const cv::Mat& img);

	void WrapInputLayer(std::vector* input_channels);

	void Preprocess(const cv::Mat& img,
		std::vector* input_channels);

private:
	shared_ptr > net_;
	cv::Size input_geometry_;
	int num_channels_;
	cv::Mat mean_;
	std::vector labels_;
};


Classifier::Classifier()
{

}

Classifier::Classifier(const string& model_file,
	const string& trained_file,
	const string& mean_file,
	const string& label_file) {
#ifdef CPU_ONLY
	Caffe::set_mode(Caffe::CPU);
#else
	Caffe::set_mode(Caffe::GPU);
#endif

	/* Load the network. */
	net_.reset(new Net(model_file, TEST));
	net_->CopyTrainedLayersFrom(trained_file);

	CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
	CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

	Blob* input_layer = net_->input_blobs()[0];
	num_channels_ = input_layer->channels();
	CHECK(num_channels_ == 3 || num_channels_ == 1)
		<< "Input layer should have 1 or 3 channels.";
	input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

	/* Load the binaryproto mean file. */
	SetMean(mean_file);

	/* Load labels. */
	std::ifstream labels(label_file.c_str());
	CHECK(labels) << "Unable to open labels file " << label_file;
	string line;
	while (std::getline(labels, line))
		labels_.push_back(string(line));

	Blob* output_layer = net_->output_blobs()[0];
	CHECK_EQ(labels_.size(), output_layer->channels())
		<< "Number of labels is different from the output layer dimension.";
}

void Classifier::ClassifierInit(const string& model_file,
	const string& trained_file,
	const string& mean_file,
	const string& label_file) {
#ifdef CPU_ONLY
	Caffe::set_mode(Caffe::CPU);
#else
	Caffe::set_mode(Caffe::GPU);
#endif

	/* Load the network. */
	net_.reset(new Net(model_file, TEST));
	net_->CopyTrainedLayersFrom(trained_file);

	CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
	CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

	Blob* input_layer = net_->input_blobs()[0];
	num_channels_ = input_layer->channels();
	CHECK(num_channels_ == 3 || num_channels_ == 1)
		<< "Input layer should have 1 or 3 channels.";
	input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

	/* Load the binaryproto mean file. */
	SetMean(mean_file);

	/* Load labels. */
	std::ifstream labels(label_file.c_str());
	CHECK(labels) << "Unable to open labels file " << label_file;
	string line;
	while (std::getline(labels, line))
		labels_.push_back(string(line));

	Blob* output_layer = net_->output_blobs()[0];
	CHECK_EQ(labels_.size(), output_layer->channels())
		<< "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair& lhs,
	const std::pair& rhs) {
	return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector Argmax(const std::vector& v, int N) {
	std::vector > pairs;
	for (size_t i = 0; i < v.size(); ++i)
		pairs.push_back(std::make_pair(v[i], static_cast(i)));
	std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

	std::vector result;
	for (int i = 0; i < N; ++i)
		result.push_back(pairs[i].second);
	return result;
}

/* Return the top N predictions. */
std::vector Classifier::Classify(const cv::Mat& img, int N) {
	std::vector output = Predict(img);

	N = std::min(labels_.size(), N);
	std::vector maxN = Argmax(output, N);
	std::vector predictions;
	for (int i = 0; i < N; ++i) {
		int idx = maxN[i];
		predictions.push_back(std::make_pair(labels_[idx], output[idx]));
	}

	return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
	BlobProto blob_proto;
	ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

	/* Convert from BlobProto to Blob */
	Blob mean_blob;
	mean_blob.FromProto(blob_proto);
	CHECK_EQ(mean_blob.channels(), num_channels_)
		<< "Number of channels of mean file doesn't match input layer.";

	/* The format of the mean file is planar 32-bit float BGR or grayscale. */
	std::vector channels;
	float* data = mean_blob.mutable_cpu_data();
	for (int i = 0; i < num_channels_; ++i) {
		/* Extract an individual channel. */
		cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
		channels.push_back(channel);
		data += mean_blob.height() * mean_blob.width();
	}

	/* Merge the separate channels into a single image. */
	cv::Mat mean;
	cv::merge(channels, mean);

	/* Compute the global mean pixel value and create a mean image
	* filled with this value. */
	cv::Scalar channel_mean = cv::mean(mean);
	mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector Classifier::Predict(const cv::Mat& img) {
	Blob* input_layer = net_->input_blobs()[0];
	input_layer->Reshape(1, num_channels_,
		input_geometry_.height, input_geometry_.width);
	/* Forward dimension change to all layers. */
	net_->Reshape();

	std::vector input_channels;
	WrapInputLayer(&input_channels);

	Preprocess(img, &input_channels);

	net_->Forward();

	/* Copy the output layer to a std::vector */
	Blob* output_layer = net_->output_blobs()[0];
	const float* begin = output_layer->cpu_data();
	const float* end = begin + output_layer->channels();
	return std::vector(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector* input_channels) {
	Blob* input_layer = net_->input_blobs()[0];

	int width = input_layer->width();
	int height = input_layer->height();
	float* input_data = input_layer->mutable_cpu_data();
	for (int i = 0; i < input_layer->channels(); ++i) {
		cv::Mat channel(height, width, CV_32FC1, input_data);
		input_channels->push_back(channel);
		input_data += width * height;
	}
}

void Classifier::Preprocess(const cv::Mat& img,
	std::vector* input_channels) {
	/* Convert the input image to the input image format of the network. */
	cv::Mat sample;
	if (img.channels() == 3 && num_channels_ == 1)
		cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
	else if (img.channels() == 4 && num_channels_ == 1)
		cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
	else if (img.channels() == 4 && num_channels_ == 3)
		cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
	else if (img.channels() == 1 && num_channels_ == 3)
		cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
	else
		sample = img;

	cv::Mat sample_resized;
	if (sample.size() != input_geometry_)
		cv::resize(sample, sample_resized, input_geometry_);
	else
		sample_resized = sample;

	cv::Mat sample_float;
	if (num_channels_ == 3)
		sample_resized.convertTo(sample_float, CV_32FC3);
	else
		sample_resized.convertTo(sample_float, CV_32FC1);

	cv::Mat sample_normalized;
	cv::subtract(sample_float, mean_, sample_normalized);

	/* This operation will write the separate BGR planes directly to the
	* input layer of the network because it is wrapped by the cv::Mat
	* objects in input_channels. */
	cv::split(sample_normalized, *input_channels);

	CHECK(reinterpret_cast(input_channels->at(0).data)
		== net_->input_blobs()[0]->cpu_data())
		<< "Input channels are not wrapping the input layer of the network.";
}


Classifier classifier;
_declspec(dllexport)  void initNet(string model_file, string trained_file, string mean_file, string label_file)
{
	::google::InitGoogleLogging("init");

	classifier.ClassifierInit(model_file, trained_file, mean_file, label_file);
}

//************************************
// Method:    RegPic
// FullName:  RegPic
// Access:    public 
// Returns:   void
// Qualifier:
// Parameter: int rows
// Parameter: int cols
// Parameter: unsigned __int8 * data  8位单通道,灰度图
// Parameter: float a[4]  4类相似度,也可以修改位返回最大相似度的序号,但是损失了其他信息
//************************************
_declspec(dllexport) void RegPic(int rows, int cols, unsigned __int8 *data, float classPro[4])
{
	cv::Mat image(rows, cols, CV_8UC1, &data[0]);//单通道灰度图

	if (image.empty())
	{
		std::cout << "image read error" << std::endl;
		return;
	}
	cv::Mat img;
	cvtColor(image, img, CV_GRAY2BGR);

	std::vector predictions = classifier.Classify(img);

	/* Print the top N predictions. */
	for (size_t i = 0; i < predictions.size(); ++i) 
	{
		Prediction p = predictions[i];
		std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
			<< p.first << "\"" << std::endl;

		int classnum = p.first[0] - 48;//类别序号
		classPro[classnum] = p.second;
	}
}


测试工程添加上面生成的dll
测试源码:

#include 
#include   

using namespace std;
using namespace cv;

_declspec(dllexport) void RegPic(int rows, int cols, unsigned __int8 *data, float classPro[4]);
_declspec(dllexport)  void initNet(string model_file, string trained_file, string mean_file, string label_file);

void main()
{
	string model_file = "bvlc_googlenet_iter_5000.prototxt";
	string trained_file = "bvlc_googlenet_iter_5000.caffemodel";
	string mean_file = "imagenet_mean.binaryproto";
	string label_file = "synset_words.txt";

	initNet(model_file, trained_file, mean_file, label_file);//初始化网络,只需要运行一次

	for (int i = 0; i < 100; i++)
	{
		stringstream ss;
		ss << "test/(";
		ss << i;
		ss << ").png";

		Mat img = imread(ss.str(), 0);
		if (img.empty())
		{
			continue;
		}

		float classPro[4];
		//0为合格品, 1为X花, 2为XX花, 3为XXX花
		cout << "图片:" << i << endl;
		RegPic(img.rows, img.cols, img.data, classPro);//识别判断,返回a数组,4个数分别代表四类的相似度最大1最小0

	}
}

【caffe】c++中使用训练好的caffe模型,classification工程生成动态链接库——【caffe学习六】_第2张图片


你可能感兴趣的:(caffe)