DES RSA MD5三种加密算法的详尽解说

MD5算法研究
综述 
 

  md5的全称是message-digest algorithm 5(信息-摘要算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电脑。这三个算法的描述和c语言源代码在internet rfcs 1321中有详细的描述(http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由ronald l. rivest在1992年8月向ieft提交。

  rivest在1989年开发出md2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。

  为了加强算法的安全性,rivest在1990年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。den boer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此被淘汰掉了。

  尽管md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。

  一年以后,即1991年,rivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充的必要条件与md4完全相同。den boer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。

  van oorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。

  算法的应用

  md5的典型应用是对一段信息(message)产生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:

   md5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461

  这就是tanajiya.tar.gz文件的数字签名。md5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的md5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算md5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用md5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。

  md5还广泛用于加密和解密技术上。比如在unix系统中用户的密码就是以md5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成md5值,然后再去和保存在文件系统中的md5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

  正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用md5程序计算出这些字典项的md5值,然后再用目标的md5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是p(62,1)+p(62,2)….+p(62,8),那也已经是一个很天文的数字了,存储这个字典就需要tb级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码md5值的情况下才可以。这种加密技术被广泛的应用于unix系统中,这也是为什么unix系统比一般操作系统更为坚固一个重要原因。

  算法描述

  对md5算法简要的叙述可以为:md5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

  在md5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(bits length)将被扩展至n*512+448,即n*64+56个字节(bytes),n为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=n*512+448+64=(n+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。

  md5中有四个32位被称作链接变量(chaining variable)的整数参数,他们分别为:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。

  当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。

  将上面四个链接变量复制到另外四个变量中:a到a,b到b,c到c,d到d。

  主循环有四轮(md4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。

   f(x,y,z) =(x&y)|((~x)&z)
   g(x,y,z) =(x&z)|(y&(~z))
   h(x,y,z) =x^y^z
   i(x,y,z)=y^(x|(~z))
   (&是与,|是或,~是非,^是异或)

  这四个函数的说明:如果x、y和z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
f是一个逐位运算的函数。即,如果x,那么y,否则z。函数h是逐位奇偶操作符。

  假设mj表示消息的第j个子分组(从0到15),<<
   ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<<    gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<<    hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<<    ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<
  这四轮(64步)是:

  第一轮

   ff(a,b,c,d,m0,7,0xd76aa478)
   ff(d,a,b,c,m1,12,0xe8c7b756)
   ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
   ff(a,b,c,d,m4,7,0xf57c0faf)
   ff(d,a,b,c,m5,12,0x4787c62a)
   ff(c,d,a,b,m6,17,0xa8304613)
   ff(b,c,d,a,m7,22,0xfd469501)
   ff(a,b,c,d,m8,7,0x698098d8)
   ff(d,a,b,c,m9,12,0x8b44f7af)
   ff(c,d,a,b,m10,17,0xffff5bb1)
   ff(b,c,d,a,m11,22,0x895cd7be)
   ff(a,b,c,d,m12,7,0x6b901122)
   ff(d,a,b,c,m13,12,0xfd987193)
   ff(c,d,a,b,m14,17,0xa679438e)
   ff(b,c,d,a,m15,22,0x49b40821)

  第二轮

   gg(a,b,c,d,m1,5,0xf61e2562)
   gg(d,a,b,c,m6,9,0xc040b340)
   gg(c,d,a,b,m11,14,0x265e5a51)
   gg(b,c,d,a,m0,20,0xe9b6c7aa)
   gg(a,b,c,d,m5,5,0xd62f105d)
   gg(d,a,b,c,m10,9,0x02441453)
   gg(c,d,a,b,m15,14,0xd8a1e681)
   gg(b,c,d,a,m4,20,0xe7d3fbc8)
   gg(a,b,c,d,m9,5,0x21e1cde6)
   gg(d,a,b,c,m14,9,0xc33707d6)
   gg(c,d,a,b,m3,14,0xf4d50d87)
   gg(b,c,d,a,m8,20,0x455a14ed)
   gg(a,b,c,d,m13,5,0xa9e3e905)
   gg(d,a,b,c,m2,9,0xfcefa3f8)
   gg(c,d,a,b,m7,14,0x676f02d9)
   gg(b,c,d,a,m12,20,0x8d2a4c8a)

  第三轮

   hh(a,b,c,d,m5,4,0xfffa3942)
   hh(d,a,b,c,m8,11,0x8771f681)
   hh(c,d,a,b,m11,16,0x6d9d6122)
   hh(b,c,d,a,m14,23,0xfde5380c)
   hh(a,b,c,d,m1,4,0xa4beea44)
   hh(d,a,b,c,m4,11,0x4bdecfa9)
   hh(c,d,a,b,m7,16,0xf6bb4b60)
   hh(b,c,d,a,m10,23,0xbebfbc70)
   hh(a,b,c,d,m13,4,0x289b7ec6)
   hh(d,a,b,c,m0,11,0xeaa127fa)
   hh(c,d,a,b,m3,16,0xd4ef3085)
   hh(b,c,d,a,m6,23,0x04881d05)
   hh(a,b,c,d,m9,4,0xd9d4d039)
   hh(d,a,b,c,m12,11,0xe6db99e5)
   hh(c,d,a,b,m15,16,0x1fa27cf8)
   hh(b,c,d,a,m2,23,0xc4ac5665)

  第四轮

   ii(a,b,c,d,m0,6,0xf4292244)
   ii(d,a,b,c,m7,10,0x432aff97)
   ii(c,d,a,b,m14,15,0xab9423a7)
   ii(b,c,d,a,m5,21,0xfc93a039)
   ii(a,b,c,d,m12,6,0x655b59c3)
   ii(d,a,b,c,m3,10,0x8f0ccc92)
   ii(c,d,a,b,m10,15,0xffeff47d)
   ii(b,c,d,a,m1,21,0x85845dd1)
   ii(a,b,c,d,m8,6,0x6fa87e4f)
   ii(d,a,b,c,m15,10,0xfe2ce6e0)
   ii(c,d,a,b,m6,15,0xa3014314)
   ii(b,c,d,a,m13,21,0x4e0811a1)
   ii(a,b,c,d,m4,6,0xf7537e82)
   ii(d,a,b,c,m11,10,0xbd3af235)
   ii(c,d,a,b,m2,15,0x2ad7d2bb)
   ii(b,c,d,a,m9,21,0xeb86d391)

  常数ti可以如下选择:

  在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将a、b、c、d分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是a、b、c和d的级联。

  当你按照我上面所说的方法实现md5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

   md5 ("") = d41d8cd98f00b204e9800998ecf8427e
   md5 ("a") = 0cc175b9c0f1b6a831c399e269772661
   md5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
   md5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
   md5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
   md5 ("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789") =
d174ab98d277d9f5a5611c2c9f419d9f
   md5 ("123456789012345678901234567890123456789012345678901234567890123456789
01234567890") = 57edf4a22be3c955ac49da2e2107b67a

  如果你用上面的信息分别对你做的md5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。


  md5的安全性

  md5相对md4所作的改进:

   1. 增加了第四轮;

   2. 每一步均有唯一的加法常数;

   3. 为减弱第二轮中函数g的对称性从(x&y)|(x&z)|(y&z)变为(x&z)|(y&(~z));

   4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

   5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

   6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

 

[06/22-12:58:29]
加密算法之RSA算法


它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

一、RSA算法 :

首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数......
p, q, r 这三个数便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了.....
再来, 计算 n = pq.......
m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n....
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小於 n, 然後分段编码......
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码後的资料......

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
於是乎, 解码完毕...... 等会会证明 c 和 a 其实是相等的

如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b......
他如果要解码的话, 必须想办法得到 r......
所以, 他必须先对 n 作质因数分解.........
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难.........


<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........

<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 modulo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上

4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.


这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)....
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等於 c, 所以这个过程确实能做到编码解码的功能.....

二、RSA 的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。

三、RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

四、RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。

五、RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。


[06/22-12:58:37]
DES算法

一、DES算法

  美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。加密算法要达到的目的(通常称为DES 密码算法要求)主要为以下四点: ☆提供高质量的数据保护,防止数据未经授权的泄露和未被察觉的修改;

☆具有相当高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握;

☆DES密码体制的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础;

☆实现经济,运行有效,并且适用于多种完全不同的应用。

 

1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES棗Data Encryption Standard)。

  目前在国内,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。
  DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。
  DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密, 生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。
  通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。
  DES算法详述
  DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法的主流程图如下:
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
  62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
  57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
  61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
  即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。
  经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
  40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
  38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
  36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
  34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大换位表
  32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
  12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
  22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
单纯换位表
  16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
  2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
  在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2......8)的功能表:
选择函数Si
S1:
  14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
  0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
  4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
  15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
  15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
  3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
  0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
  13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
  10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
  13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
  13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
  1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
  7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
  13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
  10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
  3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
  2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
  14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
  4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
  11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
  12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
  10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
  9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
  4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
  4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
  13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
  1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
  6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
  13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
  1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
  7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
  2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
  现设输入为: D=D1D2D3D4D5D6
令:列=D2D3D4D5
  行=D1D6
  然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法
  从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:
循环左移位数
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
  以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。


二、DES算法理论图解

 

DES的算法是对称的,既可用于加密又可用于解密。下图是它的算法粗框图。其具体运算过程有如下七步。

 

三、DES算法的应用误区 


  DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的,当然,随着科学技术的发展,当出现超高速计算机后,我们可考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。
  由上述DES算法介绍我们可以看到:DES算法中只用到64位密钥中的其中56位,而第8、16、24、......64位8个位并未参与DES运算,这一点,向我们提出了一个应用上的要求,即DES的安全性是基于除了8,16,24,......64位外的其余56位的组合变化256才得以保证的。因此,在实际应用中,我们应避开使用第8,16,24,......64位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地发挥作用。如果不了解这一点,把密钥Key的8,16,24,..... .64位作为有效数据使用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破译的危险,这正是DES算法在应用上的误区,留下了被人攻击、被人破译的极大隐患。  

你可能感兴趣的:(DES RSA MD5三种加密算法的详尽解说)