行为型设计模式之解释器模式(Interpreter)

设计模式之解释器模式

解释器模式主要用于编译器,解释一门语言,下面我们来演示一下四则运算,逐步将解释器模式应用到运算中,先来看一段没有使用设计模式的四则运算的代码(递归处理子表达式):

public class Interpreter_01 {

    private static final List<Character> symbols = new ArrayList<>(Arrays.asList('+','-','*','/','%','(',')'));
    public static void main(String[] args) {
        String expression = readExpression();
        Map<Character, Integer> expressionRelValue = readValue(expression);
        int result = run(expression, expressionRelValue);
        System.out.println("运算结果("+expression+")="+result);
    }

    private static String readExpression() {
        System.out.print("请输入表达式:");
        Scanner scanner = new Scanner(System.in);
        return scanner.next();
    }

    private static Map<Character, Integer> readValue(String expression){
        Map<Character, Integer> expressionRelValue = new HashMap<>();
        if(null!=expression && !"".equals(expression)){
            char[] chars = expression.toCharArray();
            for (int i = 0; i < chars.length; i++) {
                char var = chars[i];
                if(!symbols.contains(var)){
                    System.out.print(var+"=");
                    Scanner scanner = new Scanner(System.in);
                    expressionRelValue.put(var,Integer.valueOf(scanner.next()));
                }
            }
        }
        return expressionRelValue;
    }

    private static int run(String expression, Map<Character, Integer> expressionRelValue){
        char[] chars = expression.toCharArray();
        Stack<Integer> stack = new Stack<>();
        for (int i = 0; i < chars.length; i++) {
            char var = chars[i];
            switch (var){
                case '+':
                    return stack.push(stack.pop()+run(expression.substring(i+1), expressionRelValue));
                case '-':
                    return stack.push(stack.pop()-run(expression.substring(i+1), expressionRelValue));
                case '(':
                    return stack.push(run(expression.substring(i+1), expressionRelValue));
                case ')':
                    break;
                default:
                    stack.push(expressionRelValue.get(var));
                    break;
            }
        }
        return stack.pop();
    }
}

运行结果:

请输入表达式:a+b+c-d
a=2
b=3
c=4
d=1
运算结果(a+b+c-d)=8

以上是最简单的设计,没有依赖任何的类,就完成了四则运算。这样的设计只能解决一时问题,如果希望能够支持后续进行优雅的扩展,那么需要对整个运算解析逻辑重新设计,
首先分析下计算逻辑:

  1. 如果是运算符号,那么必定两边都会有数值或者是表达式,否则表达式错误
  2. 如果是前括号"(",那么需要循环处理内部的子表达式,直到遇到后括号")",子表达式运算结束
  3. 每次运算结束的值都需要压入栈,在下次计算时在出栈

重新设计后代码如下:

public class Interpreter_02 {

    private static final List<Character> symbols = new ArrayList<>(Arrays.asList('+','-','*','/','%','(',')'));
    public static void main(String[] args) {
        String expression = readExpression();
        Map<Character, Integer> expressionRelValue = readValue(expression);
        AbstractExpression abstractExpression = run(expression, expressionRelValue);
        System.out.println("运算结果("+expression+")="+abstractExpression.interpreter(expressionRelValue));
    }

    private static String readExpression() {
        System.out.print("请输入表达式:");
        Scanner scanner = new Scanner(System.in);
        return scanner.next();
    }

    private static Map<Character, Integer> readValue(String expression){
        Map<Character, Integer> expressionRelValue = new HashMap<>();
        if(null!=expression && !"".equals(expression)){
            char[] chars = expression.toCharArray();
            for (int i = 0; i < chars.length; i++) {
                char var = chars[i];
                if(!symbols.contains(var)){
                    System.out.print(var+"=");
                    Scanner scanner = new Scanner(System.in);
                    expressionRelValue.put(var,Integer.valueOf(scanner.next()));
                }
            }
        }
        return expressionRelValue;
    }

    private static AbstractExpression run(String expression, Map<Character, Integer> expressionRelValue){
        char[] chars = expression.toCharArray();
        Stack<AbstractExpression> stack = new Stack<>();
        for (int i = 0; i < chars.length; i++) {
            char var = chars[i];
            switch (var){
                case '+':
                    return stack.push(new AddExpression(stack.pop(),run(expression.substring(i+1), expressionRelValue)));
                case '-':
                    return stack.push(new SubExpression(stack.pop(),run(expression.substring(i+1), expressionRelValue)));
                case '(':
                    return stack.push(new LeftParenthesesExpression(run(expression.substring(i+1), expressionRelValue)));
                case ')':
                    break;
                default:
                    stack.push(new VarExpression(var));
                    break;
            }
        }
        return stack.pop();
    }

    abstract static class AbstractExpression{
        public abstract int interpreter(Map<Character, Integer> map);
    }

    static class VarExpression extends AbstractExpression{
        private char key;

        public VarExpression(char key) {
            this.key = key;
        }

        @Override
        public int interpreter(Map<Character, Integer> map) {
            return map.get(this.key);
        }
    }

    abstract static class SymbolExpression extends AbstractExpression{
        private AbstractExpression left;
        private AbstractExpression right;

        public SymbolExpression(AbstractExpression left, AbstractExpression right) {
            this.left = left;
            this.right = right;
        }
    }

    static class AddExpression extends SymbolExpression{

        public AddExpression(AbstractExpression left, AbstractExpression right) {
            super(left, right);
        }

        @Override
        public int interpreter(Map<Character, Integer> map) {
            return super.left.interpreter(map)+super.right.interpreter(map);
        }
    }

    static class SubExpression extends SymbolExpression{

        public SubExpression(AbstractExpression left, AbstractExpression right) {
            super(left, right);
        }

        @Override
        public int interpreter(Map<Character, Integer> map) {
            return super.left.interpreter(map)-super.right.interpreter(map);
        }
    }

    static class LeftParenthesesExpression extends SymbolExpression{

        public LeftParenthesesExpression(AbstractExpression right) {
            super(null, right);
        }

        @Override
        public int interpreter(Map<Character, Integer> map) {
            return super.right.interpreter(map);
        }
    }
    
}

重构后的代码,主要将运算分成了两部分,一部分是key对应的数值,一部分是运算符号。但是这两部分最终都要返回一个相同的结果,所以继承了同一个抽象类,并实现各自的处理逻辑。这就完成了一个简单的加减法运算的解析。

解释器模式的官方定义:给定一门语言,定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中的句子。

优点:

扩展性好

缺点:

类膨胀
调试复杂
如果循环次数过大和递归深度越深,效率越低

你可能感兴趣的:(Java设计模式)