在前面我们说了系统滴答定时器(systick)。这里说定时器(TIM)。
关于这两个的区别如下:
1.systick属于内核上的外设。TIM是片上外设。
2.systick计数值为24位,且只能向下递减计数。TIM计数值位16位,且有向上计数(TIM6/7),可以向上也可以向下技术(除了TIM6/7以外其他计数器)。
3.systick通常为操作系统服务。
STM32F1 系列中,除了互联型的产品,共有 8 个定时器,分为基本定时器,通用定时器和高级定时器。
基本定时器 TIM6 和 TIM7 是一个 16 位的只能向上计数的定时器,只能定时,没有外部 IO。
通用定时器 TIM2/3/4/5 是一个 16 位的可以向上/下计数的定时器,可以定时,可以输出比较,可以输入捕捉,每个定时器有四个外部 IO。
高级定时器 TIM1/8是一个 16 位的可以向上/下计数的定时器,可以定时,可以输出比较,可以输入捕捉,还可以有三相电机互补输出信号,每个定时器有 8 个外部 IO。
基本定时器 TIM6 和 TIM7 还可以为DAC(数模转换器提供时钟).
就内部结构讲解:
定时器时钟 TIMxCLK,即内部时钟 CK_INT,经 APB1 预分频器后分频提供,如果
APB1 预分频系数等于 1,则频率不变,否则频率乘以 2,库函数中 APB1 预分频的系数是 2,即 PCLK1=36M,所以定时器时钟 TIMxCLK=36*2=72M。
定时器时钟经过 PSC 预分频器之后,即 CK_CNT,用来驱动计数器计数。 PSC 是一个16 位的预分频器,可以对定时器时钟 TIMxCLK 进行 1~65536 之间的任何一个数进行分频。
具体计算方式为: CK_CNT=TIMxCLK/(PSC+1)
计数器 CNT 是一个 16 位的计数器,只能往上计数,最大计数值为 65535。当计数达到自动重装载寄存器的时候产生更新事件,并清零从头开始计数。
自动重装载寄存器 ARR 是一个 16 位的寄存器,这里面装着计数器能计数的最大数值。当计数到这个值的时候,如果使能了中断的话,定时器就产生溢出中断。
这里要说明一点,定时器溢出后可以产生中断也可以不产生。具体的区别会在下面的程序中说明。
定时器的一次定时时间等于计数器的中断周期乘以中断的次数。
计数器在 CK_CNT 的驱动下,计一个数的时间则是 CK_CLK 的倒数,等于: 1/(TIMxCLK/(PSC+1)),产生一次中断的时间则等于: 1/(CK_CLK * (ARR+1))。
即(ARR+1)(PSC+1)/TIMxCLK。
如果在中断服务程序里面设置一个变量 time,用来 记 录 中 断的 次 数,那 么 就 可 以计 算 出我们 需 要 的 定时 时 间等于 :
(ARR+1)(PSC+1)/TIMxCLK*time。
对定时器外设建立了四个初始化结构体,基本定时器只用到其中一个即 TIM_TimeBaseInitTypeDef,其他三个我们在通用/高级定时器章节讲解。
typedef struct {
uint16_t TIM_Prescaler; // 预分频器
uint16_t TIM_CounterMode; // 计数模式
uint32_t TIM_Period; // 定时器周期
uint16_t TIM_ClockDivision; // 时钟分频
uint8_t TIM_RepetitionCounter; // 重复计算器
} TIM_TimeBaseInitTypeDef;
1.预分频器时钟源经该预分频器才是定时器时钟,它设定TIMx_PSC 寄存器的值。可设置范围为 0 至 65535,实现 1 至 65536 分频。
2.定时器计数方式,可是在为向上计数、向下计数以及三种中心对齐模式。基本定时器只能是向上计数,即 TIMx_CNT 只能从 0 开始递增,并且无需初始化
3.定时器周期,实际就是设定自动重载寄存器的值,在事件生成时更新到影子寄存器。可设置范围为 0 至 65535。
4.时钟分频,设置定时器时钟 CK_INT 频率与数字滤波器采样时钟频率分频比,基本定时器没有此功能,不用设置。
5.重复计数器,属于高级控制寄存器专用寄存器位,利用它可以非常容易控制输出 PWM 的个数。这里不用设置。
注意:影子寄存器的引入是ARM的一个特点。在框图表示上下面有一个阴影。
这表示在物理上这个寄存器对应2个寄存器:一个是我们可以写入或读出的寄存器,称为预装载寄存器,另一个是我们看不见的、无法真正对其读写操作的,但在使用中真正起作用的寄存器,称为影子寄存器.数据手册介绍预装载寄存器的内容可以随时传送到影子寄存器,即两者是连通的(permanently),或者在每一次更新事件(UEV)时才把预装载寄存器的内容传送到影子寄存器。
前面我们说了,定时器溢出之后可以中断也可以不中断,那么不中断,就去查询它的溢出标志位(TIM_FLAG_Update)。
bsp_basetim.h内容:
#ifndef __BSP_BASETIM_H
#define __BSP_BASETIM_H
#include "stm32f10x.h"
/********************基本定时器TIM参数定义,只限TIM6、7************/
#define BASIC_TIM6 // 如果使用TIM7,注释掉这个宏即可
#ifdef BASIC_TIM6 // 使用基本定时器TIM6
#define BASIC_TIM TIM6
#define BASIC_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd
#define BASIC_TIM_CLK RCC_APB1Periph_TIM6
//计时1ms
#define BASIC_TIM_Period (1000-1)
#define BASIC_TIM_Prescaler (72-1)
#else // 使用基本定时器TIM7
#define BASIC_TIM TIM7
#define BASIC_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd
#define BASIC_TIM_CLK RCC_APB1Periph_TIM7
#define BASIC_TIM_Period (1000-1)
#define BASIC_TIM_Prescaler 71
#endif
void BASIC_TIM_Config(void);
void TIM_Delay_Ms( __IO uint32_t ms);
#endif /* __BSP_BASETIM_H */
bsp_basetim.c内容:
#include "bsp_basetim.h"
void BASIC_TIM_Config(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
// 开启定时器时钟,即内部时钟CK_INT=72M
BASIC_TIM_APBxClock_FUN(BASIC_TIM_CLK, ENABLE);
// 自动重装载寄存器的值,累计TIM_Period+1个频率后产生一个更新或者中断
TIM_TimeBaseStructure.TIM_Period = BASIC_TIM_Period;
// 时钟预分频数为
TIM_TimeBaseStructure.TIM_Prescaler= BASIC_TIM_Prescaler;
// 时钟分频因子 ,基本定时器没有,不用管
//TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;
// 计数器计数模式,基本定时器只能向上计数,没有计数模式的设置
//TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;
// 重复计数器的值,基本定时器没有,不用管
//TIM_TimeBaseStructure.TIM_RepetitionCounter=0;
// 初始化定时器
TIM_TimeBaseInit(BASIC_TIM, &TIM_TimeBaseStructure);
// 清除计数器中断标志位
TIM_ClearFlag(BASIC_TIM, TIM_FLAG_Update);
// 开启计数器中断
// TIM_ITConfig(BASIC_TIM,TIM_IT_Update,ENABLE);
// 使能计数器
TIM_Cmd(BASIC_TIM, ENABLE);
while( TIM_GetFlagStatus(BASIC_TIM, TIM_FLAG_Update)==RESET );
}
void TIM_Delay_Ms( __IO uint32_t ms)//计时多少ms,在这里传递参数
{
uint32_t i;
for (i=0; i<ms; i++)
{
BASIC_TIM_Config();
}
}
main.c内容:
#include "stm32f10x.h" // 相当于51单片机中的 #include
#include "bsp_led.h"
#include "bsp_basetim.h"
int main(void)
{
// 来到这里的时候,系统的时钟已经被配置成72M。
LED_GPIO_Config();
while(1)
{
//GPIO_SetBits(LED_G_GPIO_PORT, LED_G_GPIO_PIN);
LED_G(ON);
//Delay(0xFFFFF);
TIM_Delay_Ms(500);
//GPIO_ResetBits(LED_G_GPIO_PORT, LED_G_GPIO_PIN);
LED_G(OFF);
//Delay(0xFFFFF);
TIM_Delay_Ms(500);
}
}
1-基本定时器产生500MS定时
2-在中断函数里面让LED反转
bsp_basetim.h内容:
#ifndef __BSP_BASETIM_H
#define __BSP_BASETIM_H
#include "stm32f10x.h"
/********************基本定时器TIM参数定义,只限TIM6、7************/
#define BASIC_TIM6 // 如果使用TIM7,注释掉这个宏即可
#ifdef BASIC_TIM6 // 使用基本定时器TIM6
#define BASIC_TIM TIM6
#define BASIC_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd
#define BASIC_TIM_CLK RCC_APB1Periph_TIM6
#define BASIC_TIM_Period (1000-1)//定时500 ms
#define BASIC_TIM_Prescaler (36000-1)
#define BASIC_TIM_IRQ TIM6_IRQn
#define BASIC_TIM_IRQHandler TIM6_IRQHandler
#else // 使用基本定时器TIM7
#define BASIC_TIM TIM7
#define BASIC_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd
#define BASIC_TIM_CLK RCC_APB1Periph_TIM7
#define BASIC_TIM_Period (1000-1)
#define BASIC_TIM_Prescaler (36000-1)
#define BASIC_TIM_IRQ TIM7_IRQn
#define BASIC_TIM_IRQHandler TIM7_IRQHandler
#endif
void BASIC_TIM_Init(void);
#endif /* __BSP_BASETIM_H */
bsp_basetim.c内容:
#include "bsp_basetim.h"
/*
1-基本定时器产生500MS定时
2-在中断函数里面让LED反转
编程要点
1-配置时基初始化结构体
2-开启定时器更新中断(即定时时间到了)
3-配置中断优先级
4-使能定时器
5-编写中断服务函数
6-编写main函数
*/
// 中断优先级配置
static void BASIC_TIM_NVIC_Config(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
// 设置中断组为0
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
// 设置中断来源
NVIC_InitStructure.NVIC_IRQChannel = BASIC_TIM_IRQ ;
// 设置主优先级为 0
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
// 设置抢占优先级为3
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void BASIC_TIM_Config(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
// 开启定时器时钟,即内部时钟CK_INT=72M
BASIC_TIM_APBxClock_FUN(BASIC_TIM_CLK, ENABLE);
// 自动重装载寄存器的值,累计TIM_Period+1个频率后产生一个更新或者中断
TIM_TimeBaseStructure.TIM_Period = BASIC_TIM_Period;
// 时钟预分频数为
TIM_TimeBaseStructure.TIM_Prescaler= BASIC_TIM_Prescaler;
// 时钟分频因子 ,基本定时器没有,不用管
//TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;
// 计数器计数模式,基本定时器只能向上计数,没有计数模式的设置
//TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;
// 重复计数器的值,基本定时器没有,不用管
//TIM_TimeBaseStructure.TIM_RepetitionCounter=0;
// 初始化定时器
TIM_TimeBaseInit(BASIC_TIM, &TIM_TimeBaseStructure);
// 清除计数器中断标志位
TIM_ClearFlag(BASIC_TIM, TIM_FLAG_Update);
// 开启计数器中断
TIM_ITConfig(BASIC_TIM,TIM_IT_Update,ENABLE);
// 使能计数器
TIM_Cmd(BASIC_TIM, ENABLE);
}
void BASIC_TIM_Init(void)
{
BASIC_TIM_NVIC_Config();
BASIC_TIM_Config();
}
主函数内容都是一样的。
基本定时器,只具备最基本的定时功能。产生中断或DMA操作。驱动DAC。