opencv4.0+python3.7做人脸试别 样本提取 模型训练 模型匹配

添加链接描述# opencv4.0 + python3.7
关于python的环境搭建,网络上很多了,在此不再赘述
opencv的搭建环境如下,打开命令行并且输入:

pip install opencv-python
pip install pillow
pip install opencv-contrib-python
基于您的网络状况,可能需要花费一些时间

一·人脸识别

*您的分类器的路径可能需要修改,默认在Python\Python37\Lib\site-packages\cv2\data*
data文件夹下,该文件夹主要是官方默认的分类器XML文件
此文件夹没有选对,您的代码将无法运行
默认从笔记本摄像头获取图像,如果需要从其他摄像头获取视频流,将0改为1或者2等
正确运行代码片后,您将有一个窗口,蓝色方框框住面部,绿色方框框住眼睛,按下esc退出

import numpy as np
import cv2

# 人脸识别分类器
faceCascade = cv2.CascadeClassifier(r"C:\Users\TSK\AppData\Local\Programs\Python\Python37\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml")

# 识别眼睛的分类器
eyeCascade = cv2.CascadeClassifier(r'C:\Users\TSK\AppData\Local\Programs\Python\Python37\Lib\site-packages\cv2\data\haarcascade_eye.xml')

# 开启摄像头
cap = cv2.VideoCapture(0)
ok=True

while ok:
    # 读取摄像头中的图像,ok为是否读取成功的判断参数
    ok, img = cap.read()
    # 转换成灰度图像
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 人脸检测
    faces = faceCascade.detectMultiScale(
        gray,     
        scaleFactor=1.2,
        minNeighbors=5,     
        minSize=(32, 32)
    )

    # 在检测人脸的基础上检测眼睛
    for (x, y, w, h) in faces:
        fac_gray = gray[y: (y+h), x: (x+w)]
        result = []
        eyes = eyeCascade.detectMultiScale(fac_gray, 1.3, 2)

        # 眼睛坐标的换算,将相对位置换成绝对位置
        for (ex, ey, ew, eh) in eyes:
            result.append((x+ex, y+ey, ew, eh))

    # 画矩形
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

    try :
        for (ex, ey, ew, eh) in result:
            cv2.rectangle(img, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)
    except:
        pass
 
    cv2.imshow('video', img)

    k = cv2.waitKey(1)
    if k == 27:    # press 'ESC' to quit
        break
 
cap.release()
cv2.destroyAllWindows()

二·样本提取

您需要在python文件夹中创建Facedata文件夹
在输入id后 摄像头会打开并且试别您面部,如果识别到面部,将会将面部灰度图裁剪下,并且存入Facedata文件夹下,为后面一步的模型训练做准备

import cv2
import os
# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2

cap = cv2.VideoCapture(0)

face_detector = cv2.CascadeClassifier(r'C:\Users\TSK\AppData\Local\Programs\Python\Python37\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml')

face_id = input('\n enter user id:')

print('\n Initializing face capture. Look at the camera and wait ...')

count = 0

while True:

    # 从摄像头读取图片

    sucess, img = cap.read()

    # 转为灰度图片

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 检测人脸


    faces = face_detector.detectMultiScale(
        gray,     
        scaleFactor=1.2,
        minNeighbors=5,     
        minSize=(32, 32)
    )

    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
        count += 1

        # 保存图像
        cv2.imwrite("Facedata/User." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])

        cv2.imshow('image', img)
    print (count)
    # 保持画面的持续。

    k = cv2.waitKey(1)

    if k == 27:   # 通过esc键退出摄像
        break

    elif count >= 1000:  # 得到1000个样本后退出摄像
        break

# 关闭摄像头
cap.release()
cv2.destroyAllWindows()

三·模型训练

你需要创建一个face_trainer文件夹用来保存训练好的yml文件,该代码片的原理是从上一步我们获得的Facedata中提图片并且再次进行试别,如果识别到人脸,将被加入到训练器,否则将会被剔除,在经过一段时间间的训练后,您将会得到得到您的面部分类器,为下一步面部匹配做准备

import numpy as np
from PIL import Image
import os
import cv2
# 人脸数据路径
path = 'Facedata'

recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier(r"C:\Users\TSK\AppData\Local\Programs\Python\Python37\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml")

def getImagesAndLabels(path):
    imagePaths = [os.path.join(path, f) for f in os.listdir(path)]  # join函数的作用?
    faceSamples = []
    ids = []
    for imagePath in imagePaths:
        PIL_img = Image.open(imagePath).convert('L')   # convert it to grayscale
        img_numpy = np.array(PIL_img, 'uint8')
        id = int(os.path.split(imagePath)[-1].split(".")[1])
        faces = detector.detectMultiScale(img_numpy)
        for (x, y, w, h) in faces:
            faceSamples.append(img_numpy[y:y + h, x: x + w])
            ids.append(id)
    return faceSamples, ids


print('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))

recognizer.write(r'face_trainer\trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))

四·面部匹配

先进行人脸识别,在对您的人脸进行模型匹配

import cv2

recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('face_trainer/trainer.yml')
faceCascade = cv2.CascadeClassifier(r"C:\Users\TSK\AppData\Local\Programs\Python\Python37\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml")
font = cv2.FONT_HERSHEY_SIMPLEX

idnum = 0

names = ['TSK', 'TSJ']

cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)

while True:
    ret, img = cam.read()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    faces = faceCascade.detectMultiScale(
        gray,
        scaleFactor=1.2,
        minNeighbors=5,
        minSize=(int(minW), int(minH))
    )

    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
        idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])

        if confidence < 100:
            idnum = names[idnum]
            confidence = "{0}%".format(round(100 - confidence))
        else:
            idnum = "unknown"
            confidence = "{0}%".format(round(100 - confidence))

        cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)
        cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)

    cv2.imshow('camera', img)
    k = cv2.waitKey(10)
    if k == 27:
        break

cam.release()
cv2.destroyAllWindows()

资源代码在这里下载

你可能感兴趣的:(opencv4.0+python3.7做人脸试别 样本提取 模型训练 模型匹配)