网易云音乐歌词分析

网易云音乐歌词分析 - 风挽青个人博客 https://fengwanqing.xin/1137.html

1.环境:python3.6.5 + windows10

2.依赖包: requests(需安装)、fake-useragent(需安装)、matplotlib (需安装) 、scipy==1.2.1(需要指定版本安装)、jieba (需安装) 、wordcloud(需安装)

3.某首歌链接地址(https://music.163.com/#/song?id=412911436)

一、分析网站
1.打开网址,可以看到如下页面
网易云音乐歌词分析_第1张图片
2.F12打开开发者工具
网易云音乐歌词分析_第2张图片
可以看到歌词就保存在ajax请求的一个链接返回数据里面,数据类型是json

二、编写代码
1.base_crawler.py

# codong:utf8
"""
如果报错 fake_useragent.errors.FakeUserAgentError: Maximum amount of retries reached
fake_useragent中存储的UserAgent列表发生了变动,而本地UserAgent的列表未更新所导致的,在更新fake_useragent后报错就消失了。
pip install -U fake-useragent
"""
import requests
import traceback
import csv
import codecs     # 可用于python2、python3指定写入或打开文件的编码方式
from fake_useragent import UserAgent    # 用来模拟浏览器请求
from multiprocessing.dummy import Pool    # 多线程的线程池
import string
import random
import os
 
ua = UserAgent()
 
 
class BaseCrawler(object):
 
    def __init__(self, url):
        self.url = url
        self.headers = {"User-Agent": ua.random}
 
    def get_web_data(self, method, params="", data="", get_type=1):   # 根据请求方式、参数等获取网页数据
        try:
            response = requests.request(url=self.url, headers=self.headers, method=method, params=params, data=data, timeout=5)
            print(response.status_code, response.url)
            response.encoding = response.apparent_encoding     # 采用网页的编码方式,避免获取的数据乱码
            if get_type == 1:
                return response.text  # 返回文本字符串
            else:
                return response.json()   # 返回json字符串
        except:
            traceback.print_exc()
            return
 
    @staticmethod
    def create_random_str(length=12):   # 随机生成12位长度的字符串
        str_data = string.ascii_letters + string.digits
        return "".join(random.sample(str_data, length))
 
    def download_mp4(self, url):
        try:
            response = requests.get(url, headers=self.headers)
            data = response.content    # 下载图片、视频都用response.content,表示二进制数据流
            if not os.path.exists("mp4"):
                os.mkdir("mp4")
            filename = os.getcwd()+"/mp4/"+self.create_random_str()+".mp4"
            with open(filename, "wb") as f:
                f.write(data)
        except:
            print("download error!!!")
 
    def download(self, urls):    # 多线程下载视频,和download_mp4关联
        if not isinstance(urls, list):
            urls = [urls]
        pool = Pool(4)
        pool.map(self.download_mp4, urls)
        pool.close()
        pool.join()
 
    @staticmethod
    def write_csv(filename, header, data):  # 写入csv表格
        f = codecs.open(filename, "w", encoding="gbk")
        csv_writer = csv.writer(f, dialect='excel')
        csv_writer.writerow(header)
        for i in data:
            csv_writer.writerow(i)
        f.close()
 

2.cloud_music_lyric_handler.py

# coding:utf8
from base_crawler import BaseCrawler
import traceback
import re
from matplotlib import pyplot as plt
from scipy.misc import imread
import jieba
from wordcloud import WordCloud, ImageColorGenerator
 
 
CRAWLER_URL = "http://music.163.com/api/song/lyric"
 
 
def parse_web_data():
    crawler = BaseCrawler(CRAWLER_URL)
    params = {
        "id": "412911436",
        "lv": 1,
        "kv": 1,
        "tv": -1
    }
    webData = crawler.get_web_data("get", params=params, get_type=2)  # 获取歌词json数据
    try:
        lyric_info = webData["lrc"]["lyric"]
        reg = ".*?](.*?)\n"
        data = re.findall(reg, lyric_info)       # 正则匹配查找,结果是列表
        data = data[4:]    # 去除作曲、作词那些行
        text = "".join(data)  # 把列表每一句歌词拼凑在一起,用于后面生成词云
        return text
    except:
        traceback.print_exc()   # 打印错误
        return ""
 
if __name__ == '__main__':
    text = parse_web_data()

三、结果展示
网易云音乐歌词分析_第3张图片
四、jieba分词并生成词云
cloud_music_lyric_handler.py

# coding:utf8
from base_crawler import BaseCrawler
import traceback
import re
from matplotlib import pyplot as plt
from scipy.misc import imread
import jieba
from wordcloud import WordCloud, ImageColorGenerator
 
 
CRAWLER_URL = "http://music.163.com/api/song/lyric"
 
 
def parse_web_data():
    crawler = BaseCrawler(CRAWLER_URL)
    params = {
        "id": "412911436",
        "lv": 1,
        "kv": 1,
        "tv": -1
    }
    webData = crawler.get_web_data("get", params=params, get_type=2)  # 获取歌词json数据
    try:
        lyric_info = webData["lrc"]["lyric"]
        reg = ".*?](.*?)\n"
        data = re.findall(reg, lyric_info)       # 正则匹配查找,结果是列表
        print(data)
        data = data[4:]    # 去除作曲、作词那些行
        text = "".join(data)  # 把列表每一句歌词拼凑在一起
        return text
    except:
        traceback.print_exc()   # 打印错误
        return ""
 
 
def create_word_cloud(text):
    if not text:
        return
 
    word_generator = jieba.cut(text, cut_all=False)  # 分词,返回的是一个迭代器
    words_list = list()
    for word in word_generator:
        if len(word) > 1:  # 去掉单字
            words_list.append(word)
    text = ' '.join(words_list)
 
    back_color = imread('tencent.png')  # 解析该图片
    wc = WordCloud(
        background_color='white',  # 背景颜色
        max_words=1000,  # 最大词数
        mask=back_color,  # 以该参数值作图绘制词云,这个参数不为空时,width和height会被忽略
        max_font_size=100,  # 显示字体的最大值
        font_path="/Users/tangwenpan/Downloads/simhei.ttf",  # 解决显示口字型乱码问题
        random_state=42,  # 为每个词返回一个PIL颜色
    )
    wc.generate(text)
    image_colors = ImageColorGenerator(back_color)   # 基于彩色图像生成相应彩色
    plt.figure(figsize=(15, 15))
    plt.imshow(wc.recolor(color_func=image_colors))   # 绘制词云
    plt.axis('off')    # 关闭图像坐标系
    plt.show()   # 显示图片--在窗口显示
    wc.to_file('comment.png')   # 保存图片
 
 
if __name__ == '__main__':
    text = parse_web_data()
    create_word_cloud(text)

网易云音乐歌词分析_第4张图片
素材资料补充

tencent.png
网易云音乐歌词分析_第5张图片

你可能感兴趣的:(编程语言)