概述:
在java多线程中,有synchronized关键字来实现线程间的同步互斥工作,
那么其实还有一个更优秀的机制去完成这个“同步互斥”工作,他就是Lock对象,
用得最多的是重入锁ReentrantLock和读写锁ReentrantReadWriteLock。他们具有比synchronized更为强大的功能,重入锁ReentrantLock:
在需要进行同步的代码部分加上锁定,但不要忘记最后一定要释放锁定,不然会造成锁永远无法释放,其他线程永远进不来的结果。
public class UseReentrantLock {
private Lock lock = new ReentrantLock();
public void method1(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
Thread.sleep(1000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void method2(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2..");
Thread.sleep(2000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2..");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseReentrantLock ur = new UseReentrantLock();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
ur.method1();
ur.method2();
}
}, "t1");
t1.start();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
读写锁ReentrantReadWriteLock:
其核心就是实现读写分离的锁。在高并发访问下,尤其是读多写少的情况下,性能要远高于重入锁。
synchronized、ReentrantLock,同一时间内,只能有一个线程进行访问被锁定的代码,
那么读写锁则不同,其本质是分成两个锁,即读锁、写锁。在读锁下,多个线程可以并发的进行访问,但是在写锁的时候,只能一个一个的顺序访问。
口诀:读读共享(只有所有线程都是读才是共享),写写互斥,读写互斥(重要:这个一定得互斥)。
package com.bjsxt.height.lock021;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock.ReadLock;
import java.util.concurrent.locks.ReentrantReadWriteLock.WriteLock;
public class UseReentrantReadWriteLock {
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
private ReadLock readLock = rwLock.readLock();
private WriteLock writeLock = rwLock.writeLock();
public void read(){
try {
readLock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
} catch (Exception e) {
e.printStackTrace();
} finally {
readLock.unlock();
}
}
public void write(){
try {
writeLock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
} catch (Exception e) {
e.printStackTrace();
} finally {
writeLock.unlock();
}
}
public static void main(String[] args) {
final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
urrw.read();
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
urrw.read();
}
}, "t2");
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
urrw.write();
}
}, "t3");
Thread t4 = new Thread(new Runnable() {
@Override
public void run() {
urrw.write();
}
}, "t4");
/**
* 两个读锁:
* 当前线程:t2进入...
* 当前线程:t1进入...
* 当前线程:t2退出...
* 当前线程:t1退出...
* 结论:两个都是读锁,可以同时进入
*/
// t1.start();
// t2.start();
/**
* 读写两个锁:
* 当前线程:t1进入...
* 当前线程:t1退出...
* 当前线程:t3进入...
* 当前线程:t3退出...
* 结论:读写两个锁:互斥进入,谁先抢到锁,谁先进入,下个线程只有等前一个锁释放了才能进
*/
// t1.start(); // R
// t3.start(); // W
/**
* 两个写锁:
* 当前线程:t3进入...
* 当前线程:t3退出...
* 当前线程:t4进入...
* 当前线程:t4退出...
* 结论:互斥
*/
t3.start();
t4.start();
}
}
那么同样,我们在使用Lock的时候,可以使用一个新的等待/通知的类,它就是Condition。
这个Condition一定是针对具体某一把锁的。也就是在只有锁的基础之上才会产生Condition。
public class UseCondition {
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
public void method1(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
condition.await(); //相当于 Object wait
System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行...");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void method2(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
condition.signal(); //相当于 Object notify
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseCondition uc = new UseCondition();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
uc.method1();
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
uc.method2();
}
}, "t2");
t1.start();
t2.start();
}
}
当前线程:t1进入等待状态..
当前线程:t1释放锁..
当前线程:t2进入..
当前线程:t2发出唤醒..
当前线程:t1继续执行...
package com.bjsxt.height.lock020;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
public class UseManyCondition {
private ReentrantLock lock = new ReentrantLock();
private Condition c1 = lock.newCondition();
private Condition c2 = lock.newCondition();
public void m1(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m1等待..");
c1.await(); //await能释放锁,但是会阻塞在这里
System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m1继续..");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m2(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m2等待..");
c1.await(); //await能释放锁,但是会阻塞在这里
System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m2继续..");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m3(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m3等待..");
c2.await(); //await会释放锁,但是会阻塞在这里
System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m3继续..");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m4(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
c1.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m5(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
c2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseManyCondition umc = new UseManyCondition();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
umc.m1();
}
},"t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
umc.m2();
}
},"t2");
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
umc.m3();
}
},"t3");
Thread t4 = new Thread(new Runnable() {
@Override
public void run() {
umc.m4();
}
},"t4");
Thread t5 = new Thread(new Runnable() {
@Override
public void run() {
umc.m5();
}
},"t5");
t1.start(); // c1
t2.start(); // c1
t3.start(); // c2
//过一会再唤醒线程
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
t4.start(); // c1
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
t5.start(); // c2
}
}
当前线程:t1进入方法m1等待..
当前线程:t3进入方法m3等待..
当前线程:t2进入方法m2等待..
当前线程:t4唤醒..
当前线程:t1方法m1继续..
当前线程:t2方法m2继续..
当前线程:t5唤醒..
当前线程:t3方法m3继续..
公平锁和非公平锁:
Lock lock = new ReentrantLock(boolean isFair); //不公平锁,顺序由CPU定,公平锁,要维护顺序,性能不及不公平锁
lock用法:tryLock(): 尝试获得锁,获得结果用true/false返回。
tryLock():在给定的时间内尝试获得锁,获得结果用true/false返回。
isFair():是否是公平锁。
isLocked():是否锁定。
getHoldCount(): 查询当前线程保持此锁的个数,也就是调用lock()次数。
lockInterruptibly():优先响应中断的锁。
getQueueLength():返回正在等待获取此锁定的线程数。
getWaitQueueLength():返回等待与锁定相关的给定条件Condition的线程数。
hasQueuedThread(Thread thread): 查询指定的线程是否正在等待此锁。
hasQueuedThreads(): //查询是否有线程正在等待此锁。
hasWaiters():查询是否有线程正在等待与此锁定有关的condition条件。