Java基础之Map实现篇

HashMap

HashMap概述

HashMap 是一个散列表,它存储的内容是键值对(key-value)映射。

HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。

HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。

HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”。容量 是哈希表中桶的数量,初始容量 只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。

通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。

HashMap数据结构

java.lang.Object
   ↳     java.util.AbstractMap
         ↳     java.util.HashMap

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable { }

Java基础之Map实现篇_第1张图片

从图中可以看出:
1. HashMap继承于AbstractMap类,实现了Map接口。Map是”key-value键值对”接口,AbstractMap实现了”键值对”的通用函数接口。
2. HashMap是通过”拉链法”实现的哈希表。它包括几个重要的成员变量:table, size, threshold, loadFactor, modCount。
  table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的”key-value键值对”都是存储在Entry数组中的。
  size是HashMap的大小,它是HashMap保存的键值对的数量。
  threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量。threshold的值=”容量*加载因子”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
  loadFactor就是加载因子。
  modCount是用来实现fail-fast机制的。
  

fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件(http://www.cnblogs.com/skywang12345/p/3308762.html)

HashMap的构造函数

HashMap共有4个构造函数

// 默认构造函数。
HashMap()

// 指定“容量大小”的构造函数
HashMap(int capacity)

// 指定“容量大小”和“加载因子”的构造函数
HashMap(int capacity, float loadFactor)

// 包含“子Map”的构造函数
HashMap(Map map)

HashMap的API

void                 clear()
Object               clone()
boolean              containsKey(Object key)
boolean              containsValue(Object value)
Set>     entrySet()
V                    get(Object key)
boolean              isEmpty()
Set               keySet()
V                    put(K key, V value)
void                 putAll(Map map)
V                    remove(Object key)
int                  size()
Collection        values()

HashMap源码解析

http://www.cnblogs.com/skywang12345/p/3310835.html

为了更了解HashMap的原理,下面对HashMap源码代码作出分析。
在阅读源码时,建议参考后面的说明来建立对HashMap的整体认识,这样更容易理解HashMap

package java.util;
import java.io.*;

public class HashMap
    extends AbstractMap
    implements Map, Cloneable, Serializable
{

    // 默认的初始容量是16,必须是2的幂。
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
    static final int MAXIMUM_CAPACITY = 1 << 30;

    // 默认加载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    // 存储数据的Entry数组,长度是2的幂。
    // HashMap是采用拉链法实现的,每一个Entry本质上是一个单向链表
    transient Entry[] table;

    // HashMap的大小,它是HashMap保存的键值对的数量
    transient int size;

    // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
    int threshold;

    // 加载因子实际大小
    final float loadFactor;

    // HashMap被改变的次数
    transient volatile int modCount;

    // 指定“容量大小”和“加载因子”的构造函数
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        // HashMap的最大容量只能是MAXIMUM_CAPACITY
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        // 找出“大于initialCapacity”的最小的2的幂
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;

        // 设置“加载因子”
        this.loadFactor = loadFactor;
        // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
        threshold = (int)(capacity * loadFactor);
        // 创建Entry数组,用来保存数据
        table = new Entry[capacity];
        init();
    }


    // 指定“容量大小”的构造函数
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    // 默认构造函数。
    public HashMap() {
        // 设置“加载因子”
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
        threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
        // 创建Entry数组,用来保存数据
        table = new Entry[DEFAULT_INITIAL_CAPACITY];
        init();
    }

    // 包含“子Map”的构造函数
    public HashMap(Map m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        // 将m中的全部元素逐个添加到HashMap中
        putAllForCreate(m);
    }

    static int hash(int h) {
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    // 返回索引值
    // h & (length-1)保证返回值的小于length
    static int indexFor(int h, int length) {
        return h & (length-1);
    }

    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    // 获取key对应的value
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        // 获取key的hash值
        int hash = hash(key.hashCode());
        // 在“该hash值对应的链表”上查找“键值等于key”的元素
        for (Entry e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }

    // 获取“key为null”的元素的值
    // HashMap将“key为null”的元素存储在table[0]位置!
    private V getForNullKey() {
        for (Entry e = table[0]; e != null; e = e.next) {
            if (e.key == null)
                return e.value;
        }
        return null;
    }

    // HashMap是否包含key
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    // 返回“键为key”的键值对
    final Entry getEntry(Object key) {
        // 获取哈希值
        // HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值
        int hash = (key == null) ? 0 : hash(key.hashCode());
        // 在“该hash值对应的链表”上查找“键值等于key”的元素
        for (Entry e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }

    // 将“key-value”添加到HashMap中
    public V put(K key, V value) {
        // 若“key为null”,则将该键值对添加到table[0]中。
        if (key == null)
            return putForNullKey(value);
        // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
        int hash = hash(key.hashCode());
        int i = indexFor(hash, table.length);
        for (Entry e = table[i]; e != null; e = e.next) {
            Object k;
            // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        // 若“该key”对应的键值对不存在,则将“key-value”添加到table中
        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }

    // putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
    private V putForNullKey(V value) {
        for (Entry e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        // 这里的完全不会被执行到!
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }

    // 创建HashMap对应的“添加方法”,
    // 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap
    // 而put()是对外提供的往HashMap中添加元素的方法。
    private void putForCreate(K key, V value) {
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);

        // 若该HashMap表中存在“键值等于key”的元素,则替换该元素的value值
        for (Entry e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                e.value = value;
                return;
            }
        }

        // 若该HashMap表中不存在“键值等于key”的元素,则将该key-value添加到HashMap中
        createEntry(hash, key, value, i);
    }

    // 将“m”中的全部元素都添加到HashMap中。
    // 该方法被内部的构造HashMap的方法所调用。
    private void putAllForCreate(Map m) {
        // 利用迭代器将元素逐个添加到HashMap中
        for (Iterator> i = m.entrySet().iterator(); i.hasNext(); ) {
            Map.Entry e = i.next();
            putForCreate(e.getKey(), e.getValue());
        }
    }

    // 重新调整HashMap的大小,newCapacity是调整后的单位
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
        // 然后,将“新HashMap”赋值给“旧HashMap”。
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable);
        table = newTable;
        threshold = (int)(newCapacity * loadFactor);
    }

    // 将HashMap中的全部元素都添加到newTable中
    void transfer(Entry[] newTable) {
        Entry[] src = table;
        int newCapacity = newTable.length;
        for (int j = 0; j < src.length; j++) {
            Entry e = src[j];
            if (e != null) {
                src[j] = null;
                do {
                    Entry next = e.next;
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                } while (e != null);
            }
        }
    }

    // 将"m"的全部元素都添加到HashMap中
    public void putAll(Map m) {
        // 有效性判断
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        // 计算容量是否足够,
        // 若“当前实际容量 < 需要的容量”,则将容量x2。
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        // 通过迭代器,将“m”中的元素逐个添加到HashMap中。
        for (Iterator> i = m.entrySet().iterator(); i.hasNext(); ) {
            Map.Entry e = i.next();
            put(e.getKey(), e.getValue());
        }
    }

    // 删除“键为key”元素
    public V remove(Object key) {
        Entry e = removeEntryForKey(key);
        return (e == null ? null : e.value);
    }

    // 删除“键为key”的元素
    final Entry removeEntryForKey(Object key) {
        // 获取哈希值。若key为null,则哈希值为0;否则调用hash()进行计算
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);
        Entry prev = table[i];
        Entry e = prev;

        // 删除链表中“键为key”的元素
        // 本质是“删除单向链表中的节点”
        while (e != null) {
            Entry next = e.next;
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    // 删除“键值对”
    final Entry removeMapping(Object o) {
        if (!(o instanceof Map.Entry))
            return null;

        Map.Entry entry = (Map.Entry) o;
        Object key = entry.getKey();
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);
        Entry prev = table[i];
        Entry e = prev;

        // 删除链表中的“键值对e”
        // 本质是“删除单向链表中的节点”
        while (e != null) {
            Entry next = e.next;
            if (e.hash == hash && e.equals(entry)) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    // 清空HashMap,将所有的元素设为null
    public void clear() {
        modCount++;
        Entry[] tab = table;
        for (int i = 0; i < tab.length; i++)
            tab[i] = null;
        size = 0;
    }

    // 是否包含“值为value”的元素
    public boolean containsValue(Object value) {
    // 若“value为null”,则调用containsNullValue()查找
    if (value == null)
            return containsNullValue();

    // 若“value不为null”,则查找HashMap中是否有值为value的节点。
    Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (value.equals(e.value))
                    return true;
    return false;
    }

    // 是否包含null值
    private boolean containsNullValue() {
    Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (e.value == null)
                    return true;
    return false;
    }

    // 克隆一个HashMap,并返回Object对象
    public Object clone() {
        HashMap result = null;
        try {
            result = (HashMap)super.clone();
        } catch (CloneNotSupportedException e) {
            // assert false;
        }
        result.table = new Entry[table.length];
        result.entrySet = null;
        result.modCount = 0;
        result.size = 0;
        result.init();
        // 调用putAllForCreate()将全部元素添加到HashMap中
        result.putAllForCreate(this);

        return result;
    }

    // Entry是单向链表。
    // 它是 “HashMap链式存储法”对应的链表。
    // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
    static class Entry implements Map.Entry {
        final K key;
        V value;
        // 指向下一个节点
        Entry next;
        final int hash;

        // 构造函数。
        // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
        Entry(int h, K k, V v, Entry n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        // 判断两个Entry是否相等
        // 若两个Entry的“key”和“value”都相等,则返回true。
        // 否则,返回false
        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        // 实现hashCode()
        public final int hashCode() {
            return (key==null   ? 0 : key.hashCode()) ^
                   (value==null ? 0 : value.hashCode());
        }

        public final String toString() {
            return getKey() + "=" + getValue();
        }

        // 当向HashMap中添加元素时,绘调用recordAccess()。
        // 这里不做任何处理
        void recordAccess(HashMap m) {
        }

        // 当从HashMap中删除元素时,绘调用recordRemoval()。
        // 这里不做任何处理
        void recordRemoval(HashMap m) {
        }
    }

    // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
    void addEntry(int hash, K key, V value, int bucketIndex) {
        // 保存“bucketIndex”位置的值到“e”中
        Entry e = table[bucketIndex];
        // 设置“bucketIndex”位置的元素为“新Entry”,
        // 设置“e”为“新Entry的下一个节点”
        table[bucketIndex] = new Entry(hash, key, value, e);
        // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
        if (size++ >= threshold)
            resize(2 * table.length);
    }

    // 创建Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
    // 它和addEntry的区别是:
    // (01) addEntry()一般用在 新增Entry可能导致“HashMap的实际容量”超过“阈值”的情况下。
    //   例如,我们新建一个HashMap,然后不断通过put()向HashMap中添加元素;
    // put()是通过addEntry()新增Entry的。
    //   在这种情况下,我们不知道何时“HashMap的实际容量”会超过“阈值”;
    //   因此,需要调用addEntry()
    // (02) createEntry() 一般用在 新增Entry不会导致“HashMap的实际容量”超过“阈值”的情况下。
    //   例如,我们调用HashMap“带有Map”的构造函数,它绘将Map的全部元素添加到HashMap中;
    // 但在添加之前,我们已经计算好“HashMap的容量和阈值”。也就是,可以确定“即使将Map中
    // 的全部元素添加到HashMap中,都不会超过HashMap的阈值”。
    //   此时,调用createEntry()即可。
    void createEntry(int hash, K key, V value, int bucketIndex) {
        // 保存“bucketIndex”位置的值到“e”中
        Entry e = table[bucketIndex];
        // 设置“bucketIndex”位置的元素为“新Entry”,
        // 设置“e”为“新Entry的下一个节点”
        table[bucketIndex] = new Entry(hash, key, value, e);
        size++;
    }

    // HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
    // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
    private abstract class HashIterator implements Iterator {
        // 下一个元素
        Entry next;
        // expectedModCount用于实现fast-fail机制。
        int expectedModCount;
        // 当前索引
        int index;
        // 当前元素
        Entry current;

        HashIterator() {
            expectedModCount = modCount;
            if (size > 0) { // advance to first entry
                Entry[] t = table;
                // 将next指向table中第一个不为null的元素。
                // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        // 获取下一个元素
        final Entry nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Entry e = next;
            if (e == null)
                throw new NoSuchElementException();

            // 注意!!!
            // 一个Entry就是一个单向链表
            // 若该Entry的下一个节点不为空,就将next指向下一个节点;
            // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
            if ((next = e.next) == null) {
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
            current = e;
            return e;
        }

        // 删除当前元素
        public void remove() {
            if (current == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Object k = current.key;
            current = null;
            HashMap.this.removeEntryForKey(k);
            expectedModCount = modCount;
        }

    }

    // value的迭代器
    private final class ValueIterator extends HashIterator {
        public V next() {
            return nextEntry().value;
        }
    }

    // key的迭代器
    private final class KeyIterator extends HashIterator {
        public K next() {
            return nextEntry().getKey();
        }
    }

    // Entry的迭代器
    private final class EntryIterator extends HashIterator> {
        public Map.Entry next() {
            return nextEntry();
        }
    }

    // 返回一个“key迭代器”
    Iterator newKeyIterator()   {
        return new KeyIterator();
    }
    // 返回一个“value迭代器”
    Iterator newValueIterator()   {
        return new ValueIterator();
    }
    // 返回一个“entry迭代器”
    Iterator> newEntryIterator()   {
        return new EntryIterator();
    }

    // HashMap的Entry对应的集合
    private transient Set> entrySet = null;

    // 返回“key的集合”,实际上返回一个“KeySet对象”
    public Set keySet() {
        Set ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    // Key对应的集合
    // KeySet继承于AbstractSet,说明该集合中没有重复的Key。
    private final class KeySet extends AbstractSet {
        public Iterator iterator() {
            return newKeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return HashMap.this.removeEntryForKey(o) != null;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // 返回“value集合”,实际上返回的是一个Values对象
    public Collection values() {
        Collection vs = values;
        return (vs != null ? vs : (values = new Values()));
    }

    // “value集合”
    // Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,
    // Values中的元素能够重复。因为不同的key可以指向相同的value。
    private final class Values extends AbstractCollection {
        public Iterator iterator() {
            return newValueIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // 返回“HashMap的Entry集合”
    public Set> entrySet() {
        return entrySet0();
    }

    // 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
    private Set> entrySet0() {
        Set> es = entrySet;
        return es != null ? es : (entrySet = new EntrySet());
    }

    // EntrySet对应的集合
    // EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
    private final class EntrySet extends AbstractSet> {
        public Iterator> iterator() {
            return newEntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry) o;
            Entry candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }
        public boolean remove(Object o) {
            return removeMapping(o) != null;
        }
        public int size() {
            return size;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // java.io.Serializable的写入函数
    // 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException
    {
        Iterator> i =
            (size > 0) ? entrySet0().iterator() : null;

        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();

        // Write out number of buckets
        s.writeInt(table.length);

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        if (i != null) {
            while (i.hasNext()) {
            Map.Entry e = i.next();
            s.writeObject(e.getKey());
            s.writeObject(e.getValue());
            }
        }
    }


    private static final long serialVersionUID = 362498820763181265L;

    // java.io.Serializable的读取函数:根据写入方式读出
    // 将HashMap的“总的容量,实际容量,所有的Entry”依次读出
    private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException
    {
        // Read in the threshold, loadfactor, and any hidden stuff
        s.defaultReadObject();

        // Read in number of buckets and allocate the bucket array;
        int numBuckets = s.readInt();
        table = new Entry[numBuckets];

        init();  // Give subclass a chance to do its thing.

        // Read in size (number of Mappings)
        int size = s.readInt();

        // Read the keys and values, and put the mappings in the HashMap
        for (int i=0; ivalue = (V) s.readObject();
            putForCreate(key, value);
        }
    }

    // 返回“HashMap总的容量”
    int   capacity()     { return table.length; }
    // 返回“HashMap的加载因子”
    float loadFactor()   { return loadFactor;   }
}

说明:

在详细介绍HashMap的代码之前,我们需要了解:HashMap就是一个散列表,它是通过“拉链法”解决哈希冲突的。

还需要再补充说明的一点是影响HashMap性能的有两个参数:初始容量(initialCapacity) 和加载因子(loadFactor)。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。

* HashMap的“拉链法”相关内容*

HashMap数据存储数组

transient Entry[] table;

HashMap中的key-value都是存储在Entry数组中的。

数据节点Entry的数据结构

static class Entry implements Map.Entry {
    final K key;
    V value;
    // 指向下一个节点
    Entry next;
    final int hash;

    // 构造函数。
    // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
    Entry(int h, K k, V v, Entry n) {
        value = v;
        next = n;
        key = k;
        hash = h;
    }

    public final K getKey() {
        return key;
    }

    public final V getValue() {
        return value;
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    // 判断两个Entry是否相等
    // 若两个Entry的“key”和“value”都相等,则返回true。
    // 否则,返回false
    public final boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry e = (Map.Entry)o;
        Object k1 = getKey();
        Object k2 = e.getKey();
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {
            Object v1 = getValue();
            Object v2 = e.getValue();
            if (v1 == v2 || (v1 != null && v1.equals(v2)))
                return true;
        }
        return false;
    }

    // 实现hashCode()
    public final int hashCode() {
        return (key==null   ? 0 : key.hashCode()) ^
               (value==null ? 0 : value.hashCode());
    }

    public final String toString() {
        return getKey() + "=" + getValue();
    }

    // 当向HashMap中添加元素时,绘调用recordAccess()。
    // 这里不做任何处理
    void recordAccess(HashMap m) {
    }

    // 当从HashMap中删除元素时,绘调用recordRemoval()。
    // 这里不做任何处理
    void recordRemoval(HashMap m) {
    }
}

从中,我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说HashMap是通过拉链法解决哈希冲突的。

Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。

HashMap的构造函数

// 默认构造函数。
public HashMap() {
    // 设置“加载因子”
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
    threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
    // 创建Entry数组,用来保存数据
    table = new Entry[DEFAULT_INITIAL_CAPACITY];
    init();
}

// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    // HashMap的最大容量只能是MAXIMUM_CAPACITY
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);

    // Find a power of 2 >= initialCapacity
    int capacity = 1;
    while (capacity < initialCapacity)
        capacity <<= 1;

    // 设置“加载因子”
    this.loadFactor = loadFactor;
    // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
    threshold = (int)(capacity * loadFactor);
    // 创建Entry数组,用来保存数据
    table = new Entry[capacity];
    init();
}

// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

// 包含“子Map”的构造函数
public HashMap(Map m) {
    this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                  DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
    // 将m中的全部元素逐个添加到HashMap中
    putAllForCreate(m);
}

HashMap的遍历

遍历HashMap的键值对

第一步:根据entrySet()获取HashMap的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

推荐的遍历方式:

// 假设map是HashMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 获取key
    key = (String)entry.getKey();
        // 获取value
    integ = (Integer)entry.getValue();
}

遍历HashMap的键

第一步:根据keySet()获取HashMap的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是HashMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
        // 获取key
    key = (String)iter.next();
        // 根据key,获取value
    integ = (Integer)map.get(key);
}

遍历HashMap的值

第一步:根据value()获取HashMap的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是HashMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

HashMap示例

public class Test {
     public static void main(String[] args) {
            testHashMapAPIs();
        }

        private static void testHashMapAPIs() {
            // 初始化随机种子
            Random r = new Random();
            // 新建HashMap
            HashMap map = new HashMap();
            // 添加操作
            map.put("one", r.nextInt(10));
            map.put("two", r.nextInt(10));
            map.put("three", r.nextInt(10));

            // 打印出map
            System.out.println("map:"+map );

            // 通过Iterator遍历key-value
            Iterator iter = map.entrySet().iterator();
            while(iter.hasNext()) {
                Map.Entry entry = (Map.Entry)iter.next();
                System.out.println("next : "+ entry.getKey() +" - "+entry.getValue());
            }

            // HashMap的键值对个数        
            System.out.println("size:"+map.size());

            // containsKey(Object key) :是否包含键key
            System.out.println("contains key two : "+map.containsKey("two"));
            System.out.println("contains key five : "+map.containsKey("five"));

            // containsValue(Object value) :是否包含值value
            System.out.println("contains value 0 : "+map.containsValue(Integer.valueOf(0)));

            // remove(Object key) : 删除键key对应的键值对
            map.remove("three");

            System.out.println("map:"+map );

            // clear() : 清空HashMap
            map.clear();

            // isEmpty() : HashMap是否为空
            System.out.println((map.isEmpty()?"map is empty":"map is not empty") );
        }
}
/*
输出:
map:{two=6, one=5, three=5}
two : 6
one : 5
three : 5
size:3
contains key two : true
contains key five : false
contains value 0 : false
map:{two=6, one=5}
map is empty
*/

HashTable

HashTable概述

和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。

Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。一个类只能继承一个类,可以实现多个接口。
Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。

Hashtable 的实例有两个参数影响其性能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。

通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。

* Hashtable数据结构*

Hashtable的继承关系

java.lang.Object
   ↳     java.util.Dictionary
         ↳     java.util.Hashtable

public class Hashtable<K,V> extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable { }

Hashtable与Map关系如下图:

Java基础之Map实现篇_第2张图片

从图中可以看出:
1. Hashtable继承于Dictionary类,实现了Map接口。Map是”key-value键值对”接口,Dictionary是声明了操作”键值对”函数接口的抽象类。
2. Hashtable是通过”拉链法”实现的哈希表。它包括几个重要的成员变量:table, count, threshold, loadFactor, modCount。
  table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的”key-value键值对”都是存储在Entry数组中的。
  count是Hashtable的大小,它是Hashtable保存的键值对的数量。
  threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=”容量*加载因子”。
  loadFactor就是加载因子。
  modCount是用来实现fail-fast机制的

Hashtable的构造函数

// 默认构造函数。
public Hashtable() 

// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) 

// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) 

// 包含“子Map”的构造函数
public Hashtable(Map t)

Hashtable的API

synchronized void                clear()
synchronized Object              clone()
             boolean             contains(Object value)
synchronized boolean             containsKey(Object key)
synchronized boolean             containsValue(Object value)
synchronized Enumeration      elements()
synchronized Set>    entrySet()
synchronized boolean             equals(Object object)
synchronized V                   get(Object key)
synchronized int                 hashCode()
synchronized boolean             isEmpty()
synchronized Set              keySet()
synchronized Enumeration      keys()
synchronized V                   put(K key, V value)
synchronized void                putAll(Map map)
synchronized V                   remove(Object key)
synchronized int                 size()
synchronized String              toString()
synchronized Collection       values()

Hashtable源码解析(基于JDK1.6.0_45)

http://www.cnblogs.com/skywang12345/p/3310887.html

Hashtable实现的Cloneable接口
Hashtable实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个Hashtable对象并返回。

Hashtable实现的Serializable接口

Hashtable实现java.io.Serializable,分别实现了串行读取、写入功能。
串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
串行读取函数:根据写入方式读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出

Hashtable遍历方式

1 遍历Hashtable的键值对

第一步:根据entrySet()获取Hashtable的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 获取key
    key = (String)entry.getKey();
        // 获取value
    integ = (Integer)entry.getValue();
}

2 通过Iterator遍历Hashtable的键

第一步:根据keySet()获取Hashtable的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
        // 获取key
    key = (String)iter.next();
        // 根据key,获取value
    integ = (Integer)table.get(key);
}

4.3 通过Iterator遍历Hashtable的值

第一步:根据value()获取Hashtable的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer value = null;
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

4.4 通过Enumeration遍历Hashtable的键

第一步:根据keys()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。

while(enu.hasMoreElements()) {
    System.out.println(enu.nextElement());
}   

4.5 通过Enumeration遍历Hashtable的值

第一步:根据elements()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。

Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
    System.out.println(enu.nextElement());
}

Hashtable示例

public class Test {
    public static void main(String[] args) {
        testHashtableAPIs();
    }

    private static void testHashtableAPIs() {
        // 初始化随机种子
        Random r = new Random();
        // 新建Hashtable
        Hashtable table = new Hashtable();
        // 添加操作
        table.put("one", r.nextInt(10));
        table.put("two", r.nextInt(10));
        table.put("three", r.nextInt(10));

        // 打印出table
        System.out.println("table:"+table );

        // 通过Iterator遍历key-value
        Iterator iter = table.entrySet().iterator();
        while(iter.hasNext()) {
            Map.Entry entry = (Map.Entry)iter.next();
            System.out.println( entry.getKey() +" : "+entry.getValue());
        }

        // Hashtable的键值对个数        
        System.out.println("size:"+table.size());

        // containsKey(Object key) :是否包含键key
        System.out.println("contains key two : "+table.containsKey("two"));
        System.out.println("contains key five : "+table.containsKey("five"));

        // containsValue(Object value) :是否包含值value
        System.out.println("contains value 0 : "+table.containsValue(new Integer(0)));

        // remove(Object key) : 删除键key对应的键值对
        table.remove("three");

        System.out.println("table:"+table );

        // clear() : 清空Hashtable
        table.clear();

        // isEmpty() : Hashtable是否为空
        System.out.println((table.isEmpty()?"table is empty":"table is not empty") );
    }
}

/*
输出:
table:{two=5, one=6, three=9}
two : 5
one : 6
three : 9
size:3
contains key two : true
contains key five : false
contains value 0 : false
table:{two=5, one=6}
table is empty
*/

TreeMap

TreeMap 简介

TreeMap 是一个有序的key-value集合,它是通过红黑树实现的。

TreeMap 继承于AbstractMap,所以它是一个Map,即一个key-value集合。

TreeMap 实现了NavigableMap接口,意味着它支持一系列的导航方法。比如返回有序的key集合。

TreeMap 实现了Cloneable接口,意味着它能被克隆。

TreeMap 实现了java.io.Serializable接口,意味着它支持序列化。

TreeMap基于红黑树(Red-Black tree)实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator 进行排序,具体取决于使用的构造方法。

TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。

另外,TreeMap是非同步的。 它的iterator 方法返回的迭代器是fail-fastl的。

TreeMap数据结构

TreeMap的继承关系

java.lang.Object
   ↳     java.util.AbstractMap
         ↳     java.util.TreeMap

public class TreeMap<K,V>
    extends AbstractMap<K,V>
    implements NavigableMap<K,V>, Cloneable, java.io.Serializable {}

TreeMap与Map关系如下图:

Java基础之Map实现篇_第3张图片

从图中可以看出:
1. TreeMap实现继承于AbstractMap,并且实现了NavigableMap接口。
2. TreeMap的本质是R-B Tree(红黑树),它包含几个重要的成员变量: root, size, comparator。

 root 是红黑数的根节点。它是Entry类型,Entry是红黑数的节点,它包含了红黑数的6个基本组成成分:key(键)、value(值)、left(左孩子)、right(右孩子)、parent(父节点)、color(颜色)。Entry节点根据key进行排序,Entry节点包含的内容为value。
  

size是红黑数中节点的个数。

红黑树(一)之 原理和算法详细介绍http://www.cnblogs.com/skywang12345/p/3245399.html

TreeMap的构造函数

// 默认构造函数。使用该构造函数,TreeMap中的元素按照自然排序进行排列。
TreeMap()

// 创建的TreeMap包含Map
TreeMap(Mapextends K, ? extends V> copyFrom)

// 指定Tree的比较器
TreeMap(Comparatorsuper K> comparator)

// 创建的TreeSet包含copyFrom
TreeMap(SortedMapextends V> copyFrom)

TreeMap的API

Entry<K, V>                ceilingEntry(K key)
K                          ceilingKey(K key)
void                       clear()
Object                     clone()
ComparatorK>      comparator()
boolean                    containsKey(Object key)
NavigableSet<K>            descendingKeySet()
NavigableMap<K, V>         descendingMap()
SetK, V>>           entrySet()
Entry<K, V>                firstEntry()
K                          firstKey()
Entry<K, V>                floorEntry(K key)
K                          floorKey(K key)
V                          get(Object key)
NavigableMap<K, V>         headMap(K to, boolean inclusive)
SortedMap<K, V>            headMap(K toExclusive)
Entry<K, V>                higherEntry(K key)
K                          higherKey(K key)
boolean                    isEmpty()
Set<K>                     keySet()
Entry<K, V>                lastEntry()
K                          lastKey()
Entry<K, V>                lowerEntry(K key)
K                          lowerKey(K key)
NavigableSet<K>            navigableKeySet()
Entry<K, V>                pollFirstEntry()
Entry<K, V>                pollLastEntry()
V                          put(K key, V value)
V                          remove(Object key)
int                        size()
SortedMap<K, V>            subMap(K fromInclusive, K toExclusive)
NavigableMap<K, V>         subMap(K from, boolean fromInclusive, K to, boolean toInclusive)
NavigableMap<K, V>         tailMap(K from, boolean inclusive)
SortedMap<K, V>            tailMap(K fromInclusive)

TreeMap源码解析

为了更了解TreeMap的原理,下面对TreeMap源码代码作出分析。我们先给出源码内容,后面再对源码进行详细说明,当然,源码内容中也包含了详细的代码注释。读者阅读的时候,建议先看后面的说明,先建立一个整体印象;之后再阅读源码。

package java.util;

public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{

    // 比较器。用来给TreeMap排序
    private final Comparatorsuper K> comparator;

    // TreeMap是红黑树实现的,root是红黑书的根节点
    private transient Entry root = null;

    // 红黑树的节点总数
    private transient int size = 0;

    // 记录红黑树的修改次数
    private transient int modCount = 0;

    // 默认构造函数
    public TreeMap() {
        comparator = null;
    }

    // 带比较器的构造函数
    public TreeMap(Comparatorsuper K> comparator) {
        this.comparator = comparator;
    }

    // 带Map的构造函数,Map会成为TreeMap的子集
    public TreeMap(Map m) {
        comparator = null;
        putAll(m);
    }

    // 带SortedMap的构造函数,SortedMap会成为TreeMap的子集
    public TreeMap(SortedMap m) {
        comparator = m.comparator();
        try {
            buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }
    }

    public int size() {
        return size;
    }

    // 返回TreeMap中是否保护“键(key)”
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    // 返回TreeMap中是否保护"值(value)"
    public boolean containsValue(Object value) {
        // getFirstEntry() 是返回红黑树的第一个节点
        // successor(e) 是获取节点e的后继节点
        for (Entry e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }

    // 获取“键(key)”对应的“值(value)”
    public V get(Object key) {
        // 获取“键”为key的节点(p)
        Entry p = getEntry(key);
        // 若节点(p)为null,返回null;否则,返回节点对应的值
        return (p==null ? null : p.value);
    }

    public Comparatorsuper K> comparator() {
        return comparator;
    }

    // 获取第一个节点对应的key
    public K firstKey() {
        return key(getFirstEntry());
    }

    // 获取最后一个节点对应的key
    public K lastKey() {
        return key(getLastEntry());
    }

    // 将map中的全部节点添加到TreeMap中
    public void putAll(Map map) {
        // 获取map的大小
        int mapSize = map.size();
        // 如果TreeMap的大小是0,且map的大小不是0,且map是已排序的“key-value对”
        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
            Comparator c = ((SortedMap)map).comparator();
            // 如果TreeMap和map的比较器相等;
            // 则将map的元素全部拷贝到TreeMap中,然后返回!
            if (c == comparator || (c != null && c.equals(comparator))) {
                ++modCount;
                try {
                    buildFromSorted(mapSize, map.entrySet().iterator(),
                                null, null);
                } catch (java.io.IOException cannotHappen) {
                } catch (ClassNotFoundException cannotHappen) {
                }
                return;
            }
        }
        // 调用AbstractMap中的putAll();
        // AbstractMap中的putAll()又会调用到TreeMap的put()
        super.putAll(map);
    }

    // 获取TreeMap中“键”为key的节点
    final Entry getEntry(Object key) {
        // 若“比较器”为null,则通过getEntryUsingComparator()获取“键”为key的节点
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        Comparablesuper K> k = (Comparablesuper K>) key;
        // 将p设为根节点
        Entry p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            // 若“p的key” < key,则p=“p的左孩子”
            if (cmp < 0)
                p = p.left;
            // 若“p的key” > key,则p=“p的左孩子”
            else if (cmp > 0)
                p = p.right;
            // 若“p的key” = key,则返回节点p
            else
                return p;
        }
        return null;
    }

    // 获取TreeMap中“键”为key的节点(对应TreeMap的比较器不是null的情况)
    final Entry getEntryUsingComparator(Object key) {
        K k = (K) key;
        Comparatorsuper K> cpr = comparator;
        if (cpr != null) {
            // 将p设为根节点
            Entry p = root;
            while (p != null) {
                int cmp = cpr.compare(k, p.key);
                // 若“p的key” < key,则p=“p的左孩子”
                if (cmp < 0)
                    p = p.left;
                // 若“p的key” > key,则p=“p的左孩子”
                else if (cmp > 0)
                    p = p.right;
                // 若“p的key” = key,则返回节点p
                else
                    return p;
            }
        }
        return null;
    }

    // 获取TreeMap中不小于key的最小的节点;
    // 若不存在(即TreeMap中所有节点的键都比key大),就返回null
    final Entry getCeilingEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            // 情况一:若“p的key” > key。
            // 若 p 存在左孩子,则设 p=“p的左孩子”;
            // 否则,返回p
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            // 情况二:若“p的key” < key。
            } else if (cmp > 0) {
                // 若 p 存在右孩子,则设 p=“p的右孩子”
                if (p.right != null) {
                    p = p.right;
                } else {
                    // 若 p 不存在右孩子,则找出 p 的后继节点,并返回
                    // 注意:这里返回的 “p的后继节点”有2种可能性:第一,null;第二,TreeMap中大于key的最小的节点。
                    //   理解这一点的核心是,getCeilingEntry是从root开始遍历的。
                    //   若getCeilingEntry能走到这一步,那么,它之前“已经遍历过的节点的key”都 > key。
                    //   能理解上面所说的,那么就很容易明白,为什么“p的后继节点”又2种可能性了。
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            // 情况三:若“p的key” = key。
            } else
                return p;
        }
        return null;
    }

    // 获取TreeMap中不大于key的最大的节点;
    // 若不存在(即TreeMap中所有节点的键都比key小),就返回null
    // getFloorEntry的原理和getCeilingEntry类似,这里不再多说。
    final Entry getFloorEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            } else if (cmp < 0) {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            } else
                return p;

        }
        return null;
    }

    // 获取TreeMap中大于key的最小的节点。
    // 若不存在,就返回null。
    //   请参照getCeilingEntry来对getHigherEntry进行理解。
    final Entry getHigherEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            } else {
                if (p.right != null) {
                    p = p.right;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            }
        }
        return null;
    }

    // 获取TreeMap中小于key的最大的节点。
    // 若不存在,就返回null。
    //   请参照getCeilingEntry来对getLowerEntry进行理解。
    final Entry getLowerEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            } else {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            }
        }
        return null;
    }

    // 将“key, value”添加到TreeMap中
    // 理解TreeMap的前提是掌握“红黑树”。
    // 若理解“红黑树中添加节点”的算法,则很容易理解put。
    public V put(K key, V value) {
        Entry t = root;
        // 若红黑树为空,则插入根节点
        if (t == null) {
        // TBD:
        // 5045147: (coll) Adding null to an empty TreeSet should
        // throw NullPointerException
        //
        // compare(key, key); // type check
            root = new Entry(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry parent;
        // split comparator and comparable paths
        Comparatorsuper K> cpr = comparator;
        // 在二叉树(红黑树是特殊的二叉树)中,找到(key, value)的插入位置。
        // 红黑树是以key来进行排序的,所以这里以key来进行查找。
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            Comparablesuper K> k = (Comparablesuper K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        // 新建红黑树的节点(e)
        Entry e = new Entry(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        // 红黑树插入节点后,不再是一颗红黑树;
        // 这里通过fixAfterInsertion的处理,来恢复红黑树的特性。
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

    // 删除TreeMap中的键为key的节点,并返回节点的值
    public V remove(Object key) {
        // 找到键为key的节点
        Entry p = getEntry(key);
        if (p == null)
            return null;

        // 保存节点的值
        V oldValue = p.value;
        // 删除节点
        deleteEntry(p);
        return oldValue;
    }

    // 清空红黑树
    public void clear() {
        modCount++;
        size = 0;
        root = null;
    }

    // 克隆一个TreeMap,并返回Object对象
    public Object clone() {
        TreeMap clone = null;
        try {
            clone = (TreeMap) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        // Put clone into "virgin" state (except for comparator)
        clone.root = null;
        clone.size = 0;
        clone.modCount = 0;
        clone.entrySet = null;
        clone.navigableKeySet = null;
        clone.descendingMap = null;

        // Initialize clone with our mappings
        try {
            clone.buildFromSorted(size, entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }

        return clone;
    }

    // 获取第一个节点(对外接口)。
    public Map.Entry firstEntry() {
        return exportEntry(getFirstEntry());
    }

    // 获取最后一个节点(对外接口)。
    public Map.Entry lastEntry() {
        return exportEntry(getLastEntry());
    }

    // 获取第一个节点,并将改节点从TreeMap中删除。
    public Map.Entry pollFirstEntry() {
        // 获取第一个节点
        Entry p = getFirstEntry();
        Map.Entry result = exportEntry(p);
        // 删除第一个节点
        if (p != null)
            deleteEntry(p);
        return result;
    }

    // 获取最后一个节点,并将改节点从TreeMap中删除。
    public Map.Entry pollLastEntry() {
        // 获取最后一个节点
        Entry p = getLastEntry();
        Map.Entry result = exportEntry(p);
        // 删除最后一个节点
        if (p != null)
            deleteEntry(p);
        return result;
    }

    // 返回小于key的最大的键值对,没有的话返回null
    public Map.Entry lowerEntry(K key) {
        return exportEntry(getLowerEntry(key));
    }

    // 返回小于key的最大的键值对所对应的KEY,没有的话返回null
    public K lowerKey(K key) {
        return keyOrNull(getLowerEntry(key));
    }

    // 返回不大于key的最大的键值对,没有的话返回null
    public Map.Entry floorEntry(K key) {
        return exportEntry(getFloorEntry(key));
    }

    // 返回不大于key的最大的键值对所对应的KEY,没有的话返回null
    public K floorKey(K key) {
        return keyOrNull(getFloorEntry(key));
    }

    // 返回不小于key的最小的键值对,没有的话返回null
    public Map.Entry ceilingEntry(K key) {
        return exportEntry(getCeilingEntry(key));
    }

    // 返回不小于key的最小的键值对所对应的KEY,没有的话返回null
    public K ceilingKey(K key) {
        return keyOrNull(getCeilingEntry(key));
    }

    // 返回大于key的最小的键值对,没有的话返回null
    public Map.Entry higherEntry(K key) {
        return exportEntry(getHigherEntry(key));
    }

    // 返回大于key的最小的键值对所对应的KEY,没有的话返回null
    public K higherKey(K key) {
        return keyOrNull(getHigherEntry(key));
    }

    // TreeMap的红黑树节点对应的集合
    private transient EntrySet entrySet = null;
    // KeySet为KeySet导航类
    private transient KeySet navigableKeySet = null;
    // descendingMap为键值对的倒序“映射”
    private transient NavigableMap descendingMap = null;

    // 返回TreeMap的“键的集合”
    public Set keySet() {
        return navigableKeySet();
    }

    // 获取“可导航”的Key的集合
    // 实际上是返回KeySet类的对象。
    public NavigableSet navigableKeySet() {
        KeySet nks = navigableKeySet;
        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
    }

    // 返回“TreeMap的值对应的集合”
    public Collection values() {
        Collection vs = values;
        return (vs != null) ? vs : (values = new Values());
    }

    // 获取TreeMap的Entry的集合,实际上是返回EntrySet类的对象。
    public Set> entrySet() {
        EntrySet es = entrySet;
        return (es != null) ? es : (entrySet = new EntrySet());
    }

    // 获取TreeMap的降序Map
    // 实际上是返回DescendingSubMap类的对象
    public NavigableMap descendingMap() {
        NavigableMap km = descendingMap;
        return (km != null) ? km :
            (descendingMap = new DescendingSubMap(this,
                                                  true, null, true,
                                                  true, null, true));
    }

    // 获取TreeMap的子Map
    // 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
    public NavigableMap subMap(K fromKey, boolean fromInclusive,
                                    K toKey,   boolean toInclusive) {
        return new AscendingSubMap(this,
                                   false, fromKey, fromInclusive,
                                   false, toKey,   toInclusive);
    }

    // 获取“Map的头部”
    // 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
    public NavigableMap headMap(K toKey, boolean inclusive) {
        return new AscendingSubMap(this,
                                   true,  null,  true,
                                   false, toKey, inclusive);
    }

    // 获取“Map的尾部”。
    // 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
    public NavigableMap tailMap(K fromKey, boolean inclusive) {
        return new AscendingSubMap(this,
                                   false, fromKey, inclusive,
                                   true,  null,    true);
    }

    // 获取“子Map”。
    // 范围是从fromKey(包括) 到 toKey(不包括)
    public SortedMap subMap(K fromKey, K toKey) {
        return subMap(fromKey, true, toKey, false);
    }

    // 获取“Map的头部”。
    // 范围从第一个节点 到 toKey(不包括)
    public SortedMap headMap(K toKey) {
        return headMap(toKey, false);
    }

    // 获取“Map的尾部”。
    // 范围是从 fromKey(包括) 到 最后一个节点
    public SortedMap tailMap(K fromKey) {
        return tailMap(fromKey, true);
    }

    // ”TreeMap的值的集合“对应的类,它集成于AbstractCollection
    class Values extends AbstractCollection<V> {
        // 返回迭代器
        public Iterator iterator() {
            return new ValueIterator(getFirstEntry());
        }

        // 返回个数
        public int size() {
            return TreeMap.this.size();
        }

        // "TreeMap的值的集合"中是否包含"对象o"
        public boolean contains(Object o) {
            return TreeMap.this.containsValue(o);
        }

        // 删除"TreeMap的值的集合"中的"对象o"
        public boolean remove(Object o) {
            for (Entry e = getFirstEntry(); e != null; e = successor(e)) {
                if (valEquals(e.getValue(), o)) {
                    deleteEntry(e);
                    return true;
                }
            }
            return false;
        }

        // 清空删除"TreeMap的值的集合"
        public void clear() {
            TreeMap.this.clear();
        }
    }

    // EntrySet是“TreeMap的所有键值对组成的集合”,
    // EntrySet集合的单位是单个“键值对”。
    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator> iterator() {
            return new EntryIterator(getFirstEntry());
        }

        // EntrySet中是否包含“键值对Object”
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry entry = (Map.Entry) o;
            V value = entry.getValue();
            Entry p = getEntry(entry.getKey());
            return p != null && valEquals(p.getValue(), value);
        }

        // 删除EntrySet中的“键值对Object”
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry entry = (Map.Entry) o;
            V value = entry.getValue();
            Entry p = getEntry(entry.getKey());
            if (p != null && valEquals(p.getValue(), value)) {
                deleteEntry(p);
                return true;
            }
            return false;
        }

        // 返回EntrySet中元素个数
        public int size() {
            return TreeMap.this.size();
        }

        // 清空EntrySet
        public void clear() {
            TreeMap.this.clear();
        }
    }

    // 返回“TreeMap的KEY组成的迭代器(顺序)”
    Iterator keyIterator() {
        return new KeyIterator(getFirstEntry());
    }

    // 返回“TreeMap的KEY组成的迭代器(逆序)”
    Iterator descendingKeyIterator() {
        return new DescendingKeyIterator(getLastEntry());
    }

    // KeySet是“TreeMap中所有的KEY组成的集合”
    // KeySet继承于AbstractSet,而且实现了NavigableSet接口。
    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
        // NavigableMap成员,KeySet是通过NavigableMap实现的
        private final NavigableMap m;
        KeySet(NavigableMap map) { m = map; }

        // 升序迭代器
        public Iterator iterator() {
            // 若是TreeMap对象,则调用TreeMap的迭代器keyIterator()
            // 否则,调用TreeMap子类NavigableSubMap的迭代器keyIterator()
            if (m instanceof TreeMap)
                return ((TreeMap)m).keyIterator();
            else
                return (Iterator)(((TreeMap.NavigableSubMap)m).keyIterator());
        }

        // 降序迭代器
        public Iterator descendingIterator() {
            // 若是TreeMap对象,则调用TreeMap的迭代器descendingKeyIterator()
            // 否则,调用TreeMap子类NavigableSubMap的迭代器descendingKeyIterator()
            if (m instanceof TreeMap)
                return ((TreeMap)m).descendingKeyIterator();
            else
                return (Iterator)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
        }

        public int size() { return m.size(); }
        public boolean isEmpty() { return m.isEmpty(); }
        public boolean contains(Object o) { return m.containsKey(o); }
        public void clear() { m.clear(); }
        public E lower(E e) { return m.lowerKey(e); }
        public E floor(E e) { return m.floorKey(e); }
        public E ceiling(E e) { return m.ceilingKey(e); }
        public E higher(E e) { return m.higherKey(e); }
        public E first() { return m.firstKey(); }
        public E last() { return m.lastKey(); }
        public Comparatorsuper E> comparator() { return m.comparator(); }
        public E pollFirst() {
            Map.Entry e = m.pollFirstEntry();
            return e == null? null : e.getKey();
        }
        public E pollLast() {
            Map.Entry e = m.pollLastEntry();
            return e == null? null : e.getKey();
        }
        public boolean remove(Object o) {
            int oldSize = size();
            m.remove(o);
            return size() != oldSize;
        }
        public NavigableSet subSet(E fromElement, boolean fromInclusive,
                                      E toElement,   boolean toInclusive) {
            return new TreeSet(m.subMap(fromElement, fromInclusive,
                                           toElement,   toInclusive));
        }
        public NavigableSet headSet(E toElement, boolean inclusive) {
            return new TreeSet(m.headMap(toElement, inclusive));
        }
        public NavigableSet tailSet(E fromElement, boolean inclusive) {
            return new TreeSet(m.tailMap(fromElement, inclusive));
        }
        public SortedSet subSet(E fromElement, E toElement) {
            return subSet(fromElement, true, toElement, false);
        }
        public SortedSet headSet(E toElement) {
            return headSet(toElement, false);
        }
        public SortedSet tailSet(E fromElement) {
            return tailSet(fromElement, true);
        }
        public NavigableSet descendingSet() {
            return new TreeSet(m.descendingMap());
        }
    }

    // 它是TreeMap中的一个抽象迭代器,实现了一些通用的接口。
    abstract class PrivateEntryIterator<T> implements Iterator<T> {
        // 下一个元素
        Entry next;
        // 上一次返回元素
        Entry lastReturned;
        // 期望的修改次数,用于实现fast-fail机制
        int expectedModCount;

        PrivateEntryIterator(Entry first) {
            expectedModCount = modCount;
            lastReturned = null;
            next = first;
        }

        public final boolean hasNext() {
            return next != null;
        }

        // 获取下一个节点
        final Entry nextEntry() {
            Entry e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = successor(e);
            lastReturned = e;
            return e;
        }

        // 获取上一个节点
        final Entry prevEntry() {
            Entry e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = predecessor(e);
            lastReturned = e;
            return e;
        }

        // 删除当前节点
        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            // 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。
            // 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。
            //     根据“红黑树”的特性可知:
            //     当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。
            //     这意味着“当被删除节点有两个儿子时,删除当前节点之后,'新的当前节点'实际上是‘原有的后继节点(即下一个节点)’”。
            //     而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。
            if (lastReturned.left != null && lastReturned.right != null)
                next = lastReturned;
            deleteEntry(lastReturned);
            expectedModCount = modCount;
            lastReturned = null;
        }
    }

    // TreeMap的Entry对应的迭代器
    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
        EntryIterator(Entry first) {
            super(first);
        }
        public Map.Entry next() {
            return nextEntry();
        }
    }

    // TreeMap的Value对应的迭代器
    final class ValueIterator extends PrivateEntryIterator<V> {
        ValueIterator(Entry first) {
            super(first);
        }
        public V next() {
            return nextEntry().value;
        }
    }

    // reeMap的KEY组成的迭代器(顺序)
    final class KeyIterator extends PrivateEntryIterator<K> {
        KeyIterator(Entry first) {
            super(first);
        }
        public K next() {
            return nextEntry().key;
        }
    }

    // TreeMap的KEY组成的迭代器(逆序)
    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
        DescendingKeyIterator(Entry first) {
            super(first);
        }
        public K next() {
            return prevEntry().key;
        }
    }

    // 比较两个对象的大小
    final int compare(Object k1, Object k2) {
        return comparator==null ? ((Comparablesuper K>)k1).compareTo((K)k2)
            : comparator.compare((K)k1, (K)k2);
    }

    // 判断两个对象是否相等
    final static boolean valEquals(Object o1, Object o2) {
        return (o1==null ? o2==null : o1.equals(o2));
    }

    // 返回“Key-Value键值对”的一个简单拷贝(AbstractMap.SimpleImmutableEntry对象)
    // 可用来读取“键值对”的值
    static  Map.Entry exportEntry(TreeMap.Entry e) {
        return e == null? null :
            new AbstractMap.SimpleImmutableEntry(e);
    }

    // 若“键值对”不为null,则返回KEY;否则,返回null
    static  K keyOrNull(TreeMap.Entry e) {
        return e == null? null : e.key;
    }

    // 若“键值对”不为null,则返回KEY;否则,抛出异常
    static  K key(Entry e) {
        if (e==null)
            throw new NoSuchElementException();
        return e.key;
    }

    // TreeMap的SubMap,它一个抽象类,实现了公共操作。
    // 它包括了"(升序)AscendingSubMap"和"(降序)DescendingSubMap"两个子类。
    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
        implements NavigableMap<K,V>, java.io.Serializable {
        // TreeMap的拷贝
        final TreeMap m;
        // lo是“子Map范围的最小值”,hi是“子Map范围的最大值”;
        // loInclusive是“是否包含lo的标记”,hiInclusive是“是否包含hi的标记”
        // fromStart是“表示是否从第一个节点开始计算”,
        // toEnd是“表示是否计算到最后一个节点      ”
        final K lo, hi;      
        final boolean fromStart, toEnd;
        final boolean loInclusive, hiInclusive;

        // 构造函数
        NavigableSubMap(TreeMap m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            if (!fromStart && !toEnd) {
                if (m.compare(lo, hi) > 0)
                    throw new IllegalArgumentException("fromKey > toKey");
            } else {
                if (!fromStart) // type check
                    m.compare(lo, lo);
                if (!toEnd)
                    m.compare(hi, hi);
            }

            this.m = m;
            this.fromStart = fromStart;
            this.lo = lo;
            this.loInclusive = loInclusive;
            this.toEnd = toEnd;
            this.hi = hi;
            this.hiInclusive = hiInclusive;
        }

        // 判断key是否太小
        final boolean tooLow(Object key) {
            // 若该SubMap不包括“起始节点”,
            // 并且,“key小于最小键(lo)”或者“key等于最小键(lo),但最小键却没包括在该SubMap内”
            // 则判断key太小。其余情况都不是太小!
            if (!fromStart) {
                int c = m.compare(key, lo);
                if (c < 0 || (c == 0 && !loInclusive))
                    return true;
            }
            return false;
        }

        // 判断key是否太大
        final boolean tooHigh(Object key) {
            // 若该SubMap不包括“结束节点”,
            // 并且,“key大于最大键(hi)”或者“key等于最大键(hi),但最大键却没包括在该SubMap内”
            // 则判断key太大。其余情况都不是太大!
            if (!toEnd) {
                int c = m.compare(key, hi);
                if (c > 0 || (c == 0 && !hiInclusive))
                    return true;
            }
            return false;
        }

        // 判断key是否在“lo和hi”开区间范围内
        final boolean inRange(Object key) {
            return !tooLow(key) && !tooHigh(key);
        }

        // 判断key是否在封闭区间内
        final boolean inClosedRange(Object key) {
            return (fromStart || m.compare(key, lo) >= 0)
                && (toEnd || m.compare(hi, key) >= 0);
        }

        // 判断key是否在区间内, inclusive是区间开关标志
        final boolean inRange(Object key, boolean inclusive) {
            return inclusive ? inRange(key) : inClosedRange(key);
        }

        // 返回最低的Entry
        final TreeMap.Entry absLowest() {
        // 若“包含起始节点”,则调用getFirstEntry()返回第一个节点
        // 否则的话,若包括lo,则调用getCeilingEntry(lo)获取大于/等于lo的最小的Entry;
        //           否则,调用getHigherEntry(lo)获取大于lo的最小Entry
        TreeMap.Entry e =
                (fromStart ?  m.getFirstEntry() :
                 (loInclusive ? m.getCeilingEntry(lo) :
                                m.getHigherEntry(lo)));
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        // 返回最高的Entry
        final TreeMap.Entry absHighest() {
        // 若“包含结束节点”,则调用getLastEntry()返回最后一个节点
        // 否则的话,若包括hi,则调用getFloorEntry(hi)获取小于/等于hi的最大的Entry;
        //           否则,调用getLowerEntry(hi)获取大于hi的最大Entry
        TreeMap.Entry e =
        TreeMap.Entry e =
                (toEnd ?  m.getLastEntry() :
                 (hiInclusive ?  m.getFloorEntry(hi) :
                                 m.getLowerEntry(hi)));
            return (e == null || tooLow(e.key)) ? null : e;
        }

        // 返回"大于/等于key的最小的Entry"
        final TreeMap.Entry absCeiling(K key) {
            // 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于/等于key的最小Entry”
            // 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了!
            if (tooLow(key))
                return absLowest();
            // 获取“大于/等于key的最小Entry”
        TreeMap.Entry e = m.getCeilingEntry(key);
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        // 返回"大于key的最小的Entry"
        final TreeMap.Entry absHigher(K key) {
            // 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于key的最小Entry”
            // 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了,而不一定是“大于key的最小Entry”!
            if (tooLow(key))
                return absLowest();
            // 获取“大于key的最小Entry”
        TreeMap.Entry e = m.getHigherEntry(key);
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        // 返回"小于/等于key的最大的Entry"
        final TreeMap.Entry absFloor(K key) {
            // 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于/等于key的最大Entry”
            // 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了!
            if (tooHigh(key))
                return absHighest();
        // 获取"小于/等于key的最大的Entry"
        TreeMap.Entry e = m.getFloorEntry(key);
            return (e == null || tooLow(e.key)) ? null : e;
        }

        // 返回"小于key的最大的Entry"
        final TreeMap.Entry absLower(K key) {
            // 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于key的最大Entry”
            // 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了,而不一定是“小于key的最大Entry”!
            if (tooHigh(key))
                return absHighest();
        // 获取"小于key的最大的Entry"
        TreeMap.Entry e = m.getLowerEntry(key);
            return (e == null || tooLow(e.key)) ? null : e;
        }

        // 返回“大于最大节点中的最小节点”,不存在的话,返回null
        final TreeMap.Entry absHighFence() {
            return (toEnd ? null : (hiInclusive ?
                                    m.getHigherEntry(hi) :
                                    m.getCeilingEntry(hi)));
        }

        // 返回“小于最小节点中的最大节点”,不存在的话,返回null
        final TreeMap.Entry absLowFence() {
            return (fromStart ? null : (loInclusive ?
                                        m.getLowerEntry(lo) :
                                        m.getFloorEntry(lo)));
        }

        // 下面几个abstract方法是需要NavigableSubMap的实现类实现的方法
        abstract TreeMap.Entry subLowest();
        abstract TreeMap.Entry subHighest();
        abstract TreeMap.Entry subCeiling(K key);
        abstract TreeMap.Entry subHigher(K key);
        abstract TreeMap.Entry subFloor(K key);
        abstract TreeMap.Entry subLower(K key);
        // 返回“顺序”的键迭代器
        abstract Iterator keyIterator();
        // 返回“逆序”的键迭代器
        abstract Iterator descendingKeyIterator();

        // 返回SubMap是否为空。空的话,返回true,否则返回false
        public boolean isEmpty() {
            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
        }

        // 返回SubMap的大小
        public int size() {
            return (fromStart && toEnd) ? m.size() : entrySet().size();
        }

        // 返回SubMap是否包含键key
        public final boolean containsKey(Object key) {
            return inRange(key) && m.containsKey(key);
        }

        // 将key-value 插入SubMap中
        public final V put(K key, V value) {
            if (!inRange(key))
                throw new IllegalArgumentException("key out of range");
            return m.put(key, value);
        }

        // 获取key对应值
        public final V get(Object key) {
            return !inRange(key)? null :  m.get(key);
        }

        // 删除key对应的键值对
        public final V remove(Object key) {
            return !inRange(key)? null  : m.remove(key);
        }

        // 获取“大于/等于key的最小键值对”
        public final Map.Entry ceilingEntry(K key) {
            return exportEntry(subCeiling(key));
        }

        // 获取“大于/等于key的最小键”
        public final K ceilingKey(K key) {
            return keyOrNull(subCeiling(key));
        }

        // 获取“大于key的最小键值对”
        public final Map.Entry higherEntry(K key) {
            return exportEntry(subHigher(key));
        }

        // 获取“大于key的最小键”
        public final K higherKey(K key) {
            return keyOrNull(subHigher(key));
        }

        // 获取“小于/等于key的最大键值对”
        public final Map.Entry floorEntry(K key) {
            return exportEntry(subFloor(key));
        }

        // 获取“小于/等于key的最大键”
        public final K floorKey(K key) {
            return keyOrNull(subFloor(key));
        }

        // 获取“小于key的最大键值对”
        public final Map.Entry lowerEntry(K key) {
            return exportEntry(subLower(key));
        }

        // 获取“小于key的最大键”
        public final K lowerKey(K key) {
            return keyOrNull(subLower(key));
        }

        // 获取"SubMap的第一个键"
        public final K firstKey() {
            return key(subLowest());
        }

        // 获取"SubMap的最后一个键"
        public final K lastKey() {
            return key(subHighest());
        }

        // 获取"SubMap的第一个键值对"
        public final Map.Entry firstEntry() {
            return exportEntry(subLowest());
        }

        // 获取"SubMap的最后一个键值对"
        public final Map.Entry lastEntry() {
            return exportEntry(subHighest());
        }

        // 返回"SubMap的第一个键值对",并从SubMap中删除改键值对
        public final Map.Entry pollFirstEntry() {
        TreeMap.Entry e = subLowest();
            Map.Entry result = exportEntry(e);
            if (e != null)
                m.deleteEntry(e);
            return result;
        }

        // 返回"SubMap的最后一个键值对",并从SubMap中删除改键值对
        public final Map.Entry pollLastEntry() {
        TreeMap.Entry e = subHighest();
            Map.Entry result = exportEntry(e);
            if (e != null)
                m.deleteEntry(e);
            return result;
        }

        // Views
        transient NavigableMap descendingMapView = null;
        transient EntrySetView entrySetView = null;
        transient KeySet navigableKeySetView = null;

        // 返回NavigableSet对象,实际上返回的是当前对象的"Key集合"。 
        public final NavigableSet navigableKeySet() {
            KeySet nksv = navigableKeySetView;
            return (nksv != null) ? nksv :
                (navigableKeySetView = new TreeMap.KeySet(this));
        }

        // 返回"Key集合"对象
        public final Set keySet() {
            return navigableKeySet();
        }

        // 返回“逆序”的Key集合
        public NavigableSet descendingKeySet() {
            return descendingMap().navigableKeySet();
        }

        // 排列fromKey(包含) 到 toKey(不包含) 的子map
        public final SortedMap subMap(K fromKey, K toKey) {
            return subMap(fromKey, true, toKey, false);
        }

        // 返回当前Map的头部(从第一个节点 到 toKey, 不包括toKey)
        public final SortedMap headMap(K toKey) {
            return headMap(toKey, false);
        }

        // 返回当前Map的尾部[从 fromKey(包括fromKeyKey) 到 最后一个节点]
        public final SortedMap tailMap(K fromKey) {
            return tailMap(fromKey, true);
        }

        // Map的Entry的集合
        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
            private transient int size = -1, sizeModCount;

            // 获取EntrySet的大小
            public int size() {
                // 若SubMap是从“开始节点”到“结尾节点”,则SubMap大小就是原TreeMap的大小
                if (fromStart && toEnd)
                    return m.size();
                // 若SubMap不是从“开始节点”到“结尾节点”,则调用iterator()遍历EntrySetView中的元素
                if (size == -1 || sizeModCount != m.modCount) {
                    sizeModCount = m.modCount;
                    size = 0;
                    Iterator i = iterator();
                    while (i.hasNext()) {
                        size++;
                        i.next();
                    }
                }
                return size;
            }

            // 判断EntrySetView是否为空
            public boolean isEmpty() {
                TreeMap.Entry n = absLowest();
                return n == null || tooHigh(n.key);
            }

            // 判断EntrySetView是否包含Object
            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry entry = (Map.Entry) o;
                K key = entry.getKey();
                if (!inRange(key))
                    return false;
                TreeMap.Entry node = m.getEntry(key);
                return node != null &&
                    valEquals(node.getValue(), entry.getValue());
            }

            // 从EntrySetView中删除Object
            public boolean remove(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry entry = (Map.Entry) o;
                K key = entry.getKey();
                if (!inRange(key))
                    return false;
                TreeMap.Entry node = m.getEntry(key);
                if (node!=null && valEquals(node.getValue(),entry.getValue())){
                    m.deleteEntry(node);
                    return true;
                }
                return false;
            }
        }

        // SubMap的迭代器
        abstract class SubMapIterator<T> implements Iterator<T> {
            // 上一次被返回的Entry
            TreeMap.Entry lastReturned;
            // 指向下一个Entry
            TreeMap.Entry next;
            // “栅栏key”。根据SubMap是“升序”还是“降序”具有不同的意义
            final K fenceKey;
            int expectedModCount;

            // 构造函数
            SubMapIterator(TreeMap.Entry first,
                           TreeMap.Entry fence) {
                // 每创建一个SubMapIterator时,保存修改次数
                // 若后面发现expectedModCount和modCount不相等,则抛出ConcurrentModificationException异常。
                // 这就是所说的fast-fail机制的原理!
                expectedModCount = m.modCount;
                lastReturned = null;
                next = first;
                fenceKey = fence == null ? null : fence.key;
            }

            // 是否存在下一个Entry
            public final boolean hasNext() {
                return next != null && next.key != fenceKey;
            }

            // 返回下一个Entry
            final TreeMap.Entry nextEntry() {
                TreeMap.Entry e = next;
                if (e == null || e.key == fenceKey)
                    throw new NoSuchElementException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // next指向e的后继节点
                next = successor(e);
        lastReturned = e;
                return e;
            }

            // 返回上一个Entry
            final TreeMap.Entry prevEntry() {
                TreeMap.Entry e = next;
                if (e == null || e.key == fenceKey)
                    throw new NoSuchElementException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // next指向e的前继节点
                next = predecessor(e);
        lastReturned = e;
                return e;
            }

            // 删除当前节点(用于“升序的SubMap”)。
            // 删除之后,可以继续升序遍历;红黑树特性没变。
            final void removeAscending() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。
                // 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。
                //     根据“红黑树”的特性可知:
                //     当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。
                //     这意味着“当被删除节点有两个儿子时,删除当前节点之后,'新的当前节点'实际上是‘原有的后继节点(即下一个节点)’”。
                //     而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。
                if (lastReturned.left != null && lastReturned.right != null)
                    next = lastReturned;
                m.deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = m.modCount;
            }

            // 删除当前节点(用于“降序的SubMap”)。
            // 删除之后,可以继续降序遍历;红黑树特性没变。
            final void removeDescending() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                m.deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = m.modCount;
            }

        }

        // SubMap的Entry迭代器,它只支持升序操作,继承于SubMapIterator
        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
            SubMapEntryIterator(TreeMap.Entry first,
                                TreeMap.Entry fence) {
                super(first, fence);
            }
            // 获取下一个节点(升序)
            public Map.Entry next() {
                return nextEntry();
            }
            // 删除当前节点(升序)
            public void remove() {
                removeAscending();
            }
        }

        // SubMap的Key迭代器,它只支持升序操作,继承于SubMapIterator
        final class SubMapKeyIterator extends SubMapIterator<K> {
            SubMapKeyIterator(TreeMap.Entry first,
                              TreeMap.Entry fence) {
                super(first, fence);
            }
            // 获取下一个节点(升序)
            public K next() {
                return nextEntry().key;
            }
            // 删除当前节点(升序)
            public void remove() {
                removeAscending();
            }
        }

        // 降序SubMap的Entry迭代器,它只支持降序操作,继承于SubMapIterator
        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
            DescendingSubMapEntryIterator(TreeMap.Entry last,
                                          TreeMap.Entry fence) {
                super(last, fence);
            }

            // 获取下一个节点(降序)
            public Map.Entry next() {
                return prevEntry();
            }
            // 删除当前节点(降序)
            public void remove() {
                removeDescending();
            }
        }

        // 降序SubMap的Key迭代器,它只支持降序操作,继承于SubMapIterator
        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
            DescendingSubMapKeyIterator(TreeMap.Entry last,
                                        TreeMap.Entry fence) {
                super(last, fence);
            }
            // 获取下一个节点(降序)
            public K next() {
                return prevEntry().key;
            }
            // 删除当前节点(降序)
            public void remove() {
                removeDescending();
            }
        }
    }


    // 升序的SubMap,继承于NavigableSubMap
    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
        private static final long serialVersionUID = 912986545866124060L;

        // 构造函数
        AscendingSubMap(TreeMap m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
        }

        // 比较器
        public Comparatorsuper K> comparator() {
            return m.comparator();
        }

        // 获取“子Map”。
        // 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
        public NavigableMap subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            if (!inRange(fromKey, fromInclusive))
                throw new IllegalArgumentException("fromKey out of range");
            if (!inRange(toKey, toInclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new AscendingSubMap(m,
                                       false, fromKey, fromInclusive,
                                       false, toKey,   toInclusive);
        }

        // 获取“Map的头部”。
        // 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
        public NavigableMap headMap(K toKey, boolean inclusive) {
            if (!inRange(toKey, inclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new AscendingSubMap(m,
                                       fromStart, lo,    loInclusive,
                                       false,     toKey, inclusive);
        }

        // 获取“Map的尾部”。
        // 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
        public NavigableMap tailMap(K fromKey, boolean inclusive){
            if (!inRange(fromKey, inclusive))
                throw new IllegalArgumentException("fromKey out of range");
            return new AscendingSubMap(m,
                                       false, fromKey, inclusive,
                                       toEnd, hi,      hiInclusive);
        }

        // 获取对应的降序Map
        public NavigableMap descendingMap() {
            NavigableMap mv = descendingMapView;
            return (mv != null) ? mv :
                (descendingMapView =
                 new DescendingSubMap(m,
                                      fromStart, lo, loInclusive,
                                      toEnd,     hi, hiInclusive));
        }

        // 返回“升序Key迭代器”
        Iterator keyIterator() {
            return new SubMapKeyIterator(absLowest(), absHighFence());
        }

        // 返回“降序Key迭代器”
        Iterator descendingKeyIterator() {
            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        // “升序EntrySet集合”类
        // 实现了iterator()
        final class AscendingEntrySetView extends EntrySetView {
            public Iterator> iterator() {
                return new SubMapEntryIterator(absLowest(), absHighFence());
            }
        }

        // 返回“升序EntrySet集合”
        public Set> entrySet() {
            EntrySetView es = entrySetView;
            return (es != null) ? es : new AscendingEntrySetView();
        }

        TreeMap.Entry subLowest()       { return absLowest(); }
        TreeMap.Entry subHighest()      { return absHighest(); }
        TreeMap.Entry subCeiling(K key) { return absCeiling(key); }
        TreeMap.Entry subHigher(K key)  { return absHigher(key); }
        TreeMap.Entry subFloor(K key)   { return absFloor(key); }
        TreeMap.Entry subLower(K key)   { return absLower(key); }
    }

    // 降序的SubMap,继承于NavigableSubMap
    // 相比于升序SubMap,它的实现机制是将“SubMap的比较器反转”!
    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
        private static final long serialVersionUID = 912986545866120460L;
        DescendingSubMap(TreeMap m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
        }

        // 反转的比较器:是将原始比较器反转得到的。
        private final Comparatorsuper K> reverseComparator =
            Collections.reverseOrder(m.comparator);

        // 获取反转比较器
        public Comparatorsuper K> comparator() {
            return reverseComparator;
        }

        // 获取“子Map”。
        // 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
        public NavigableMap subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            if (!inRange(fromKey, fromInclusive))
                throw new IllegalArgumentException("fromKey out of range");
            if (!inRange(toKey, toInclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new DescendingSubMap(m,
                                        false, toKey,   toInclusive,
                                        false, fromKey, fromInclusive);
        }

        // 获取“Map的头部”。
        // 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
        public NavigableMap headMap(K toKey, boolean inclusive) {
            if (!inRange(toKey, inclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new DescendingSubMap(m,
                                        false, toKey, inclusive,
                                        toEnd, hi,    hiInclusive);
        }

        // 获取“Map的尾部”。
        // 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
        public NavigableMap tailMap(K fromKey, boolean inclusive){
            if (!inRange(fromKey, inclusive))
                throw new IllegalArgumentException("fromKey out of range");
            return new DescendingSubMap(m,
                                        fromStart, lo, loInclusive,
                                        false, fromKey, inclusive);
        }

        // 获取对应的降序Map
        public NavigableMap descendingMap() {
            NavigableMap mv = descendingMapView;
            return (mv != null) ? mv :
                (descendingMapView =
                 new AscendingSubMap(m,
                                     fromStart, lo, loInclusive,
                                     toEnd,     hi, hiInclusive));
        }

        // 返回“升序Key迭代器”
        Iterator keyIterator() {
            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        // 返回“降序Key迭代器”
        Iterator descendingKeyIterator() {
            return new SubMapKeyIterator(absLowest(), absHighFence());
        }

        // “降序EntrySet集合”类
        // 实现了iterator()
        final class DescendingEntrySetView extends EntrySetView {
            public Iterator> iterator() {
                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
            }
        }

        // 返回“降序EntrySet集合”
        public Set> entrySet() {
            EntrySetView es = entrySetView;
            return (es != null) ? es : new DescendingEntrySetView();
        }

        TreeMap.Entry subLowest()       { return absHighest(); }
        TreeMap.Entry subHighest()      { return absLowest(); }
        TreeMap.Entry subCeiling(K key) { return absFloor(key); }
        TreeMap.Entry subHigher(K key)  { return absLower(key); }
        TreeMap.Entry subFloor(K key)   { return absCeiling(key); }
        TreeMap.Entry subLower(K key)   { return absHigher(key); }
    }

    // SubMap是旧版本的类,新的Java中没有用到。
    private class SubMap extends AbstractMap<K,V>
    implements SortedMap<K,V>, java.io.Serializable {
        private static final long serialVersionUID = -6520786458950516097L;
        private boolean fromStart = false, toEnd = false;
        private K fromKey, toKey;
        private Object readResolve() {
            return new AscendingSubMap(TreeMap.this,
                                       fromStart, fromKey, true,
                                       toEnd, toKey, false);
        }
        public Set> entrySet() { throw new InternalError(); }
        public K lastKey() { throw new InternalError(); }
        public K firstKey() { throw new InternalError(); }
        public SortedMap subMap(K fromKey, K toKey) { throw new InternalError(); }
        public SortedMap headMap(K toKey) { throw new InternalError(); }
        public SortedMap tailMap(K fromKey) { throw new InternalError(); }
        public Comparatorsuper K> comparator() { throw new InternalError(); }
    }


    // 红黑树的节点颜色--红色
    private static final boolean RED   = false;
    // 红黑树的节点颜色--黑色
    private static final boolean BLACK = true;

    // “红黑树的节点”对应的类。
    // 包含了 key(键)、value(值)、left(左孩子)、right(右孩子)、parent(父节点)、color(颜色)
    static final class Entry<K,V> implements Map.Entry<K,V> {
        // 键
        K key;
        // 值
        V value;
        // 左孩子
        Entry left = null;
        // 右孩子
        Entry right = null;
        // 父节点
        Entry parent;
        // 当前节点颜色
        boolean color = BLACK;

        // 构造函数
        Entry(K key, V value, Entry parent) {
            this.key = key;
            this.value = value;
            this.parent = parent;
        }

        // 返回“键”
        public K getKey() {
            return key;
        }

        // 返回“值”
        public V getValue() {
            return value;
        }

        // 更新“值”,返回旧的值
        public V setValue(V value) {
            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        // 判断两个节点是否相等的函数,覆盖equals()函数。
        // 若两个节点的“key相等”并且“value相等”,则两个节点相等
        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;

            return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
        }

        // 覆盖hashCode函数。
        public int hashCode() {
            int keyHash = (key==null ? 0 : key.hashCode());
            int valueHash = (value==null ? 0 : value.hashCode());
            return keyHash ^ valueHash;
        }

        // 覆盖toString()函数。
        public String toString() {
            return key + "=" + value;
        }
    }

    // 返回“红黑树的第一个节点”
    final Entry getFirstEntry() {
        Entry p = root;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

    // 返回“红黑树的最后一个节点”
    final Entry getLastEntry() {
        Entry p = root;
        if (p != null)
            while (p.right != null)
                p = p.right;
        return p;
    }

    // 返回“节点t的后继节点”
    static  TreeMap.Entry successor(Entry t) {
        if (t == null)
            return null;
        else if (t.right != null) {
            Entry p = t.right;
            while (p.left != null)
                p = p.left;
            return p;
        } else {
            Entry p = t.parent;
            Entry ch = t;
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    // 返回“节点t的前继节点”
    static  Entry predecessor(Entry t) {
        if (t == null)
            return null;
        else if (t.left != null) {
            Entry p = t.left;
            while (p.right != null)
                p = p.right;
            return p;
        } else {
            Entry p = t.parent;
            Entry ch = t;
            while (p != null && ch == p.left) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    // 返回“节点p的颜色”
    // 根据“红黑树的特性”可知:空节点颜色是黑色。
    private static  boolean colorOf(Entry p) {
        return (p == null ? BLACK : p.color);
    }

    // 返回“节点p的父节点”
    private static  Entry parentOf(Entry p) {
        return (p == null ? null: p.parent);
    }

    // 设置“节点p的颜色为c”
    private static  void setColor(Entry p, boolean c) {
        if (p != null)
        p.color = c;
    }

    // 设置“节点p的左孩子”
    private static  Entry leftOf(Entry p) {
        return (p == null) ? null: p.left;
    }

    // 设置“节点p的右孩子”
    private static  Entry rightOf(Entry p) {
        return (p == null) ? null: p.right;
    }

    // 对节点p执行“左旋”操作
    private void rotateLeft(Entry p) {
        if (p != null) {
            Entry r = p.right;
            p.right = r.left;
            if (r.left != null)
                r.left.parent = p;
            r.parent = p.parent;
            if (p.parent == null)
                root = r;
            else if (p.parent.left == p)
                p.parent.left = r;
            else
                p.parent.right = r;
            r.left = p;
            p.parent = r;
        }
    }

    // 对节点p执行“右旋”操作
    private void rotateRight(Entry p) {
        if (p != null) {
            Entry l = p.left;
            p.left = l.right;
            if (l.right != null) l.right.parent = p;
            l.parent = p.parent;
            if (p.parent == null)
                root = l;
            else if (p.parent.right == p)
                p.parent.right = l;
            else p.parent.left = l;
            l.right = p;
            p.parent = l;
        }
    }

    // 插入之后的修正操作。
    // 目的是保证:红黑树插入节点之后,仍然是一颗红黑树
    private void fixAfterInsertion(Entry x) {
        x.color = RED;

        while (x != null && x != root && x.parent.color == RED) {
            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
                Entry y = rightOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == rightOf(parentOf(x))) {
                        x = parentOf(x);
                        rotateLeft(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateRight(parentOf(parentOf(x)));
                }
            } else {
                Entry y = leftOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == leftOf(parentOf(x))) {
                        x = parentOf(x);
                        rotateRight(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateLeft(parentOf(parentOf(x)));
                }
            }
        }
        root.color = BLACK;
    }

    // 删除“红黑树的节点p”
    private void deleteEntry(Entry p) {
        modCount++;
        size--;

        // If strictly internal, copy successor's element to p and then make p
        // point to successor.
        if (p.left != null && p.right != null) {
            Entry s = successor (p);
            p.key = s.key;
            p.value = s.value;
            p = s;
        } // p has 2 children

        // Start fixup at replacement node, if it exists.
        Entry replacement = (p.left != null ? p.left : p.right);

        if (replacement != null) {
            // Link replacement to parent
            replacement.parent = p.parent;
            if (p.parent == null)
                root = replacement;
            else if (p == p.parent.left)
                p.parent.left  = replacement;
            else
                p.parent.right = replacement;

            // Null out links so they are OK to use by fixAfterDeletion.
            p.left = p.right = p.parent = null;

            // Fix replacement
            if (p.color == BLACK)
                fixAfterDeletion(replacement);
        } else if (p.parent == null) { // return if we are the only node.
            root = null;
        } else { //  No children. Use self as phantom replacement and unlink.
            if (p.color == BLACK)
                fixAfterDeletion(p);

            if (p.parent != null) {
                if (p == p.parent.left)
                    p.parent.left = null;
                else if (p == p.parent.right)
                    p.parent.right = null;
                p.parent = null;
            }
        }
    }

    // 删除之后的修正操作。
    // 目的是保证:红黑树删除节点之后,仍然是一颗红黑树
    private void fixAfterDeletion(Entry x) {
        while (x != root && colorOf(x) == BLACK) {
            if (x == leftOf(parentOf(x))) {
                Entry sib = rightOf(parentOf(x));

                if (colorOf(sib) == RED) {
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateLeft(parentOf(x));
                    sib = rightOf(parentOf(x));
                }

                if (colorOf(leftOf(sib))  == BLACK &&
                    colorOf(rightOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(rightOf(sib)) == BLACK) {
                        setColor(leftOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateRight(sib);
                        sib = rightOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(rightOf(sib), BLACK);
                    rotateLeft(parentOf(x));
                    x = root;
                }
            } else { // symmetric
                Entry sib = leftOf(parentOf(x));

                if (colorOf(sib) == RED) {
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateRight(parentOf(x));
                    sib = leftOf(parentOf(x));
                }

                if (colorOf(rightOf(sib)) == BLACK &&
                    colorOf(leftOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(leftOf(sib)) == BLACK) {
                        setColor(rightOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateLeft(sib);
                        sib = leftOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(leftOf(sib), BLACK);
                    rotateRight(parentOf(x));
                    x = root;
                }
            }
        }

        setColor(x, BLACK);
    }

    private static final long serialVersionUID = 919286545866124006L;

    // java.io.Serializable的写入函数
    // 将TreeMap的“容量,所有的Entry”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out the Comparator and any hidden stuff
        s.defaultWriteObject();

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        for (Iterator> i = entrySet().iterator(); i.hasNext(); ) {
            Map.Entry e = i.next();
            s.writeObject(e.getKey());
            s.writeObject(e.getValue());
        }
    }


    // java.io.Serializable的读取函数:根据写入方式读出
    // 先将TreeMap的“容量、所有的Entry”依次读出
    private void readObject(final java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in the Comparator and any hidden stuff
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        buildFromSorted(size, null, s, null);
    }

    // 根据已经一个排好序的map创建一个TreeMap
    private void buildFromSorted(int size, Iterator it,
                 java.io.ObjectInputStream str,
                 V defaultVal)
        throws  java.io.IOException, ClassNotFoundException {
        this.size = size;
        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
                   it, str, defaultVal);
    }

    // 根据已经一个排好序的map创建一个TreeMap
    // 将map中的元素逐个添加到TreeMap中,并返回map的中间元素作为根节点。
    private final Entry buildFromSorted(int level, int lo, int hi,
                         int redLevel,
                         Iterator it,
                         java.io.ObjectInputStream str,
                         V defaultVal)
        throws  java.io.IOException, ClassNotFoundException {

        if (hi < lo) return null;


        // 获取中间元素
        int mid = (lo + hi) / 2;

        Entry left  = null;
        // 若lo小于mid,则递归调用获取(middel的)左孩子。
        if (lo < mid)
            left = buildFromSorted(level+1, lo, mid - 1, redLevel,
                   it, str, defaultVal);

        // 获取middle节点对应的key和value
        K key;
        V value;
        if (it != null) {
            if (defaultVal==null) {
                Map.Entry entry = (Map.Entry)it.next();
                key = entry.getKey();
                value = entry.getValue();
            } else {
                key = (K)it.next();
                value = defaultVal;
            }
        } else { // use stream
            key = (K) str.readObject();
            value = (defaultVal != null ? defaultVal : (V) str.readObject());
        }

        // 创建middle节点
        Entry middle =  new Entry(key, value, null);

        // 若当前节点的深度=红色节点的深度,则将节点着色为红色。
        if (level == redLevel)
            middle.color = RED;

        // 设置middle为left的父亲,left为middle的左孩子
        if (left != null) {
            middle.left = left;
            left.parent = middle;
        }

        if (mid < hi) {
            // 递归调用获取(middel的)右孩子。
            Entry right = buildFromSorted(level+1, mid+1, hi, redLevel,
                           it, str, defaultVal);
            // 设置middle为left的父亲,left为middle的左孩子
            middle.right = right;
            right.parent = middle;
        }

        return middle;
    }

    // 计算节点树为sz的最大深度,也是红色节点的深度值。
    private static int computeRedLevel(int sz) {
        int level = 0;
        for (int m = sz - 1; m >= 0; m = m / 2 - 1)
            level++;
        return level;
    }
}

说明:

在详细介绍TreeMap的代码之前,我们先建立一个整体概念。

TreeMap是通过红黑树实现的,TreeMap存储的是key-value键值对,TreeMap的排序是基于对key的排序。

TreeMap提供了操作“key”、“key-value”、“value”等方法,也提供了对TreeMap这颗树进行整体操作的方法,如获取子树、反向树。

后面的解说内容分为几部分,

首先,介绍TreeMap的核心,即红黑树相关部分;
然后,介绍TreeMap的主要函数;

再次,介绍TreeMap实现的几个接口;

最后,补充介绍TreeMap的其它内容。

详细:http://www.cnblogs.com/skywang12345/p/3310928.html

TreeMap遍历方式

4.1 遍历TreeMap的键值对

第一步:根据entrySet()获取TreeMap的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 获取key
    key = (String)entry.getKey();
        // 获取value
    integ = (Integer)entry.getValue();
}

4.2 遍历TreeMap的键

第一步:根据keySet()获取TreeMap的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
        // 获取key
    key = (String)iter.next();
        // 根据key,获取value
    integ = (Integer)map.get(key);
}

4.3 遍历TreeMap的值

第一步:根据value()获取TreeMap的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

顺序遍历和逆序遍历
keyIterator()的作用是返回顺序的KEY的集合,
descendingKeyIterator()的作用是返回逆序的KEY的集合。

代码示例

import java.util.*;

/**
 * @desc TreeMap测试程序 
 *
 * @author skywang
 */
public class TreeMapTest  {

    public static void main(String[] args) {
        // 测试常用的API
        testTreeMapOridinaryAPIs();

        // 测试TreeMap的导航函数
        //testNavigableMapAPIs();

        // 测试TreeMap的子Map函数
        //testSubMapAPIs();
    }

    /**
     * 测试常用的API
     */
    private static void testTreeMapOridinaryAPIs() {
        // 初始化随机种子
        Random r = new Random();
        // 新建TreeMap
        TreeMap tmap = new TreeMap();
        // 添加操作
        tmap.put("one", r.nextInt(10));
        tmap.put("two", r.nextInt(10));
        tmap.put("three", r.nextInt(10));

        System.out.printf("\n ---- testTreeMapOridinaryAPIs ----\n");
        // 打印出TreeMap
        System.out.printf("%s\n",tmap );

        // 通过Iterator遍历key-value
        Iterator iter = tmap.entrySet().iterator();
        while(iter.hasNext()) {
            Map.Entry entry = (Map.Entry)iter.next();
            System.out.printf("next : %s - %s\n", entry.getKey(), entry.getValue());
        }

        // TreeMap的键值对个数        
        System.out.printf("size: %s\n", tmap.size());

        // containsKey(Object key) :是否包含键key
        System.out.printf("contains key two : %s\n",tmap.containsKey("two"));
        System.out.printf("contains key five : %s\n",tmap.containsKey("five"));

        // containsValue(Object value) :是否包含值value
        System.out.printf("contains value 0 : %s\n",tmap.containsValue(new Integer(0)));

        // remove(Object key) : 删除键key对应的键值对
        tmap.remove("three");

        System.out.printf("tmap:%s\n",tmap );

        // clear() : 清空TreeMap
        tmap.clear();

        // isEmpty() : TreeMap是否为空
        System.out.printf("%s\n", (tmap.isEmpty()?"tmap is empty":"tmap is not empty") );
    }


    /**
     * 测试TreeMap的子Map函数
     */
    public static void testSubMapAPIs() {
        // 新建TreeMap
        TreeMap tmap = new TreeMap();
        // 添加“键值对”
        tmap.put("a", 101);
        tmap.put("b", 102);
        tmap.put("c", 103);
        tmap.put("d", 104);
        tmap.put("e", 105);

        System.out.printf("\n ---- testSubMapAPIs ----\n");
        // 打印出TreeMap
        System.out.printf("tmap:\n\t%s\n", tmap);

        // 测试 headMap(K toKey)
        System.out.printf("tmap.headMap(\"c\"):\n\t%s\n", tmap.headMap("c"));
        // 测试 headMap(K toKey, boolean inclusive) 
        System.out.printf("tmap.headMap(\"c\", true):\n\t%s\n", tmap.headMap("c", true));
        System.out.printf("tmap.headMap(\"c\", false):\n\t%s\n", tmap.headMap("c", false));

        // 测试 tailMap(K fromKey)
        System.out.printf("tmap.tailMap(\"c\"):\n\t%s\n", tmap.tailMap("c"));
        // 测试 tailMap(K fromKey, boolean inclusive)
        System.out.printf("tmap.tailMap(\"c\", true):\n\t%s\n", tmap.tailMap("c", true));
        System.out.printf("tmap.tailMap(\"c\", false):\n\t%s\n", tmap.tailMap("c", false));

        // 测试 subMap(K fromKey, K toKey)
        System.out.printf("tmap.subMap(\"a\", \"c\"):\n\t%s\n", tmap.subMap("a", "c"));
        // 测试 
        System.out.printf("tmap.subMap(\"a\", true, \"c\", true):\n\t%s\n", 
                tmap.subMap("a", true, "c", true));
        System.out.printf("tmap.subMap(\"a\", true, \"c\", false):\n\t%s\n", 
                tmap.subMap("a", true, "c", false));
        System.out.printf("tmap.subMap(\"a\", false, \"c\", true):\n\t%s\n", 
                tmap.subMap("a", false, "c", true));
        System.out.printf("tmap.subMap(\"a\", false, \"c\", false):\n\t%s\n", 
                tmap.subMap("a", false, "c", false));

        // 测试 navigableKeySet()
        System.out.printf("tmap.navigableKeySet():\n\t%s\n", tmap.navigableKeySet());
        // 测试 descendingKeySet()
        System.out.printf("tmap.descendingKeySet():\n\t%s\n", tmap.descendingKeySet());
    }

    /**
     * 测试TreeMap的导航函数
     */
    public static void testNavigableMapAPIs() {
        // 新建TreeMap
        NavigableMap nav = new TreeMap();
        // 添加“键值对”
        nav.put("aaa", 111);
        nav.put("bbb", 222);
        nav.put("eee", 333);
        nav.put("ccc", 555);
        nav.put("ddd", 444);

        System.out.printf("\n ---- testNavigableMapAPIs ----\n");
        // 打印出TreeMap
        System.out.printf("Whole list:%s%n", nav);

        // 获取第一个key、第一个Entry
        System.out.printf("First key: %s\tFirst entry: %s%n",nav.firstKey(), nav.firstEntry());

        // 获取最后一个key、最后一个Entry
        System.out.printf("Last key: %s\tLast entry: %s%n",nav.lastKey(), nav.lastEntry());

        // 获取“小于/等于bbb”的最大键值对
        System.out.printf("Key floor before bbb: %s%n",nav.floorKey("bbb"));

        // 获取“小于bbb”的最大键值对
        System.out.printf("Key lower before bbb: %s%n", nav.lowerKey("bbb"));

        // 获取“大于/等于bbb”的最小键值对
        System.out.printf("Key ceiling after ccc: %s%n",nav.ceilingKey("ccc"));

        // 获取“大于bbb”的最小键值对
        System.out.printf("Key higher after ccc: %s%n\n",nav.higherKey("ccc"));
    }

}


/*
 ---- testTreeMapOridinaryAPIs ----
{one=3, three=2, two=3}
next : one - 3
next : three - 2
next : two - 3
size: 3
contains key two : true
contains key five : false
contains value 0 : false
tmap:{one=3, two=3}
tmap is empty
*/

WeakHashMap

WeakHashMap简介

WeakHashMap 继承于AbstractMap,实现了Map接口。

和HashMap一样,WeakHashMap 也是一个散列表,它存储的内容也是键值对(key-value)映射,而且键和值都可以是null。

不过WeakHashMap的键是“弱键”。在 WeakHashMap 中,当某个键不再正常使用时,会被从WeakHashMap中被自动移除。更精确地说,对于一个给定的键,其映射的存在并不阻止垃圾回收器对该键的丢弃,这就使该键成为可终止的,被终止,然后被回收。某个键被终止时,它对应的键值对也就从映射中有效地移除了。

这个“弱键”的原理呢?大致上就是,通过WeakReference和ReferenceQueue实现的。 WeakHashMap的key是“弱键”,即是WeakReference类型的;ReferenceQueue是一个队列,它会保存被GC回收的“弱键”。实现步骤是:

  1. 新建WeakHashMap,将“键值对”添加到WeakHashMap中。

    实际上,WeakHashMap是通过数组table保存Entry(键值对);每一个Entry实际上是一个单向链表,即Entry是键值对链表。

  2. 当某“弱键”不再被其它对象引用,并被GC回收时。在GC回收该“弱键”时,这个“弱键”也同时会被添加到ReferenceQueue(queue)队列中。

    这就是“弱键”如何被自动从WeakHashMap中删除的步骤了。

和HashMap一样,WeakHashMap**是不同步的。**可以使用 Collections.synchronizedMap 方法来构造同步的 WeakHashMap。

WeakHashMap数据结构

WeakHashMap的继承关系

java.lang.Object
   ↳     java.util.AbstractMap
         ↳     java.util.WeakHashMap

public class WeakHashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V> {}

WeakHashMap与Map关系

Java基础之Map实现篇_第4张图片

从图中可以看出:
1. WeakHashMap继承于AbstractMap,并且实现了Map接口。
2. WeakHashMap是哈希表,但是它的键是”弱键”。WeakHashMap中保护几个重要的成员变量:table, size, threshold, loadFactor, modCount, queue。
  table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的”key-value键值对”都是存储在Entry数组中的。
  size是Hashtable的大小,它是Hashtable保存的键值对的数量。
  threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=”容量*加载因子”。
  loadFactor就是加载因子。
  modCount是用来实现fail-fast机制的
  queue保存的是“已被GC清除”的“弱引用的键”。

WeakHashMap源码

package java.util;
import java.lang.ref.WeakReference;
import java.lang.ref.ReferenceQueue;

public class WeakHashMap
    extends AbstractMap
    implements Map {

    // 默认的初始容量是16,必须是2的幂。
    private static final int DEFAULT_INITIAL_CAPACITY = 16;

    // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    // 默认加载因子
    private static final float DEFAULT_LOAD_FACTOR = 0.75f;

    // 存储数据的Entry数组,长度是2的幂。
    // WeakHashMap是采用拉链法实现的,每一个Entry本质上是一个单向链表
    private Entry[] table;

    // WeakHashMap的大小,它是WeakHashMap保存的键值对的数量
    private int size;

    // WeakHashMap的阈值,用于判断是否需要调整WeakHashMap的容量(threshold = 容量*加载因子)
    private int threshold;

    // 加载因子实际大小
    private final float loadFactor;

    // queue保存的是“已被GC清除”的“弱引用的键”。
    // 弱引用和ReferenceQueue 是联合使用的:如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中
    private final ReferenceQueue queue = new ReferenceQueue();

    // WeakHashMap被改变的次数
    private volatile int modCount;

    // 指定“容量大小”和“加载因子”的构造函数
    public WeakHashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Initial Capacity: "+
                                               initialCapacity);
        // WeakHashMap的最大容量只能是MAXIMUM_CAPACITY
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load factor: "+
                                               loadFactor);
        // 找出“大于initialCapacity”的最小的2的幂
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;
        // 创建Entry数组,用来保存数据
        table = new Entry[capacity];
        // 设置“加载因子”
        this.loadFactor = loadFactor;
        // 设置“WeakHashMap阈值”,当WeakHashMap中存储数据的数量达到threshold时,就需要将WeakHashMap的容量加倍。
        threshold = (int)(capacity * loadFactor);
    }

    // 指定“容量大小”的构造函数
    public WeakHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    // 默认构造函数。
    public WeakHashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        threshold = (int)(DEFAULT_INITIAL_CAPACITY);
        table = new Entry[DEFAULT_INITIAL_CAPACITY];
    }

    // 包含“子Map”的构造函数
    public WeakHashMap(Map m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, 16),
             DEFAULT_LOAD_FACTOR);
        // 将m中的全部元素逐个添加到WeakHashMap中
        putAll(m);
    }

    // 键为null的mask值。
    // 因为WeakReference中允许“null的key”,若直接插入“null的key”,将其当作弱引用时,会被删除。
    // 因此,这里对于“key为null”的清空,都统一替换为“key为NULL_KEY”,“NULL_KEY”是“静态的final常量”。
    private static final Object NULL_KEY = new Object();

    // 对“null的key”进行特殊处理
    private static Object maskNull(Object key) {
        return (key == null ? NULL_KEY : key);
    }

    // 还原对“null的key”的特殊处理
    private static  K unmaskNull(Object key) {
        return (K) (key == NULL_KEY ? null : key);
    }

    // 判断“x”和“y”是否相等
    static boolean eq(Object x, Object y) {
        return x == y || x.equals(y);
    }

    // 返回索引值
    // h & (length-1)保证返回值的小于length
    static int indexFor(int h, int length) {
        return h & (length-1);
    }

    // 清空table中无用键值对。原理如下:
    // (01) 当WeakHashMap中某个“弱引用的key”由于没有再被引用而被GC收回时,
    //   被回收的“该弱引用key”也被会被添加到"ReferenceQueue(queue)"中。
    // (02) 当我们执行expungeStaleEntries时,
    //   就遍历"ReferenceQueue(queue)"中的所有key
    //   然后就在“WeakReference的table”中删除与“ReferenceQueue(queue)中key”对应的键值对
    private void expungeStaleEntries() {
        Entry e;
        while ( (e = (Entry) queue.poll()) != null) {
            int h = e.hash;
            int i = indexFor(h, table.length);

            Entry prev = table[i];
            Entry p = prev;
            while (p != null) {
                Entry next = p.next;
                if (p == e) {
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;
                    e.next = null;  // Help GC
                    e.value = null; //  "   "
                    size--;
                    break;
                }
                prev = p;
                p = next;
            }
        }
    }

    // 获取WeakHashMap的table(存放键值对的数组)
    private Entry[] getTable() {
        // 删除table中“已被GC回收的key对应的键值对”
        expungeStaleEntries();
        return table;
    }

    // 获取WeakHashMap的实际大小
    public int size() {
        if (size == 0)
            return 0;
        // 删除table中“已被GC回收的key对应的键值对”
        expungeStaleEntries();
        return size;
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    // 获取key对应的value
    public V get(Object key) {
        Object k = maskNull(key);
        // 获取key的hash值。
        int h = HashMap.hash(k.hashCode());
        Entry[] tab = getTable();
        int index = indexFor(h, tab.length);
        Entry e = tab[index];
        // 在“该hash值对应的链表”上查找“键值等于key”的元素
        while (e != null) {
            if (e.hash == h && eq(k, e.get()))
                return e.value;
            e = e.next;
        }
        return null;
    }

    // WeakHashMap是否包含key
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    // 返回“键为key”的键值对
    Entry getEntry(Object key) {
        Object k = maskNull(key);
        int h = HashMap.hash(k.hashCode());
        Entry[] tab = getTable();
        int index = indexFor(h, tab.length);
        Entry e = tab[index];
        while (e != null && !(e.hash == h && eq(k, e.get())))
            e = e.next;
        return e;
    }

    // 将“key-value”添加到WeakHashMap中
    public V put(K key, V value) {
        K k = (K) maskNull(key);
        int h = HashMap.hash(k.hashCode());
        Entry[] tab = getTable();
        int i = indexFor(h, tab.length);

        for (Entry e = tab[i]; e != null; e = e.next) {
            // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
            if (h == e.hash && eq(k, e.get())) {
                V oldValue = e.value;
                if (value != oldValue)
                    e.value = value;
                return oldValue;
            }
        }

        // 若“该key”对应的键值对不存在于WeakHashMap中,则将“key-value”添加到table中
        modCount++;
        Entry e = tab[i];
        tab[i] = new Entry(k, value, queue, h, e);
        if (++size >= threshold)
            resize(tab.length * 2);
        return null;
    }

    // 重新调整WeakHashMap的大小,newCapacity是调整后的单位
    void resize(int newCapacity) {
        Entry[] oldTable = getTable();
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        // 新建一个newTable,将“旧的table”的全部元素添加到“新的newTable”中,
        // 然后,将“新的newTable”赋值给“旧的table”。
        Entry[] newTable = new Entry[newCapacity];
        transfer(oldTable, newTable);
        table = newTable;

        if (size >= threshold / 2) {
            threshold = (int)(newCapacity * loadFactor);
        } else {
            // 删除table中“已被GC回收的key对应的键值对”
            expungeStaleEntries();
            transfer(newTable, oldTable);
            table = oldTable;
        }
    }

    // 将WeakHashMap中的全部元素都添加到newTable中
    private void transfer(Entry[] src, Entry[] dest) {
        for (int j = 0; j < src.length; ++j) {
            Entry e = src[j];
            src[j] = null;
            while (e != null) {
                Entry next = e.next;
                Object key = e.get();
                if (key == null) {
                    e.next = null;  // Help GC
                    e.value = null; //  "   "
                    size--;
                } else {
                    int i = indexFor(e.hash, dest.length);
                    e.next = dest[i];
                    dest[i] = e;
                }
                e = next;
            }
        }
    }

    // 将"m"的全部元素都添加到WeakHashMap中
    public void putAll(Map m) {
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        // 计算容量是否足够,
        // 若“当前实际容量 < 需要的容量”,则将容量x2。
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        // 将“m”中的元素逐个添加到WeakHashMap中。
        for (Map.Entry e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

    // 删除“键为key”元素
    public V remove(Object key) {
        Object k = maskNull(key);
        // 获取哈希值。
        int h = HashMap.hash(k.hashCode());
        Entry[] tab = getTable();
        int i = indexFor(h, tab.length);
        Entry prev = tab[i];
        Entry e = prev;

        // 删除链表中“键为key”的元素
        // 本质是“删除单向链表中的节点”
        while (e != null) {
            Entry next = e.next;
            if (h == e.hash && eq(k, e.get())) {
                modCount++;
                size--;
                if (prev == e)
                    tab[i] = next;
                else
                    prev.next = next;
                return e.value;
            }
            prev = e;
            e = next;
        }

        return null;
    }

    // 删除“键值对”
    Entry removeMapping(Object o) {
        if (!(o instanceof Map.Entry))
            return null;
        Entry[] tab = getTable();
        Map.Entry entry = (Map.Entry)o;
        Object k = maskNull(entry.getKey());
        int h = HashMap.hash(k.hashCode());
        int i = indexFor(h, tab.length);
        Entry prev = tab[i];
        Entry e = prev;

        // 删除链表中的“键值对e”
        // 本质是“删除单向链表中的节点”
        while (e != null) {
            Entry next = e.next;
            if (h == e.hash && e.equals(entry)) {
                modCount++;
                size--;
                if (prev == e)
                    tab[i] = next;
                else
                    prev.next = next;
                return e;
            }
            prev = e;
            e = next;
        }

        return null;
    }

    // 清空WeakHashMap,将所有的元素设为null
    public void clear() {
        while (queue.poll() != null)
            ;

        modCount++;
        Entry[] tab = table;
        for (int i = 0; i < tab.length; ++i)
            tab[i] = null;
        size = 0;

        while (queue.poll() != null)
            ;
    }

    // 是否包含“值为value”的元素
    public boolean containsValue(Object value) {
        // 若“value为null”,则调用containsNullValue()查找
        if (value==null)
            return containsNullValue();

        // 若“value不为null”,则查找WeakHashMap中是否有值为value的节点。
        Entry[] tab = getTable();
        for (int i = tab.length ; i-- > 0 ;)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (value.equals(e.value))
                    return true;
        return false;
    }

    // 是否包含null值
    private boolean containsNullValue() {
        Entry[] tab = getTable();
        for (int i = tab.length ; i-- > 0 ;)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (e.value==null)
                    return true;
        return false;
    }

    // Entry是单向链表。
    // 它是 “WeakHashMap链式存储法”对应的链表。
    // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
    private static class Entry extends WeakReference implements Map.Entry {
        private V value;
        private final int hash;
        // 指向下一个节点
        private Entry next;

        // 构造函数。
        Entry(K key, V value,
          ReferenceQueue queue,
              int hash, Entry next) {
            super(key, queue);
            this.value = value;
            this.hash  = hash;
            this.next  = next;
        }

        public K getKey() {
            return WeakHashMap.unmaskNull(get());
        }

        public V getValue() {
            return value;
        }

        public V setValue(V newValue) {
        V oldValue = value;
            value = newValue;
            return oldValue;
        }

        // 判断两个Entry是否相等
        // 若两个Entry的“key”和“value”都相等,则返回true。
        // 否则,返回false
        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        // 实现hashCode()
        public int hashCode() {
            Object k = getKey();
            Object v = getValue();
            return  ((k==null ? 0 : k.hashCode()) ^
                     (v==null ? 0 : v.hashCode()));
        }

        public String toString() {
            return getKey() + "=" + getValue();
        }
    }

    // HashIterator是WeakHashMap迭代器的抽象出来的父类,实现了公共了函数。
    // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
    private abstract class HashIterator implements Iterator {
        // 当前索引
        int index;
        // 当前元素
        Entry entry = null;
        // 上一次返回元素
        Entry lastReturned = null;
        // expectedModCount用于实现fast-fail机制。
        int expectedModCount = modCount;

        // 下一个键(强引用)
        Object nextKey = null;

        // 当前键(强引用)
        Object currentKey = null;

        // 构造函数
        HashIterator() {
            index = (size() != 0 ? table.length : 0);
        }

        // 是否存在下一个元素
        public boolean hasNext() {
            Entry[] t = table;

            // 一个Entry就是一个单向链表
            // 若该Entry的下一个节点不为空,就将next指向下一个节点;
            // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
            while (nextKey == null) {
                Entry e = entry;
                int i = index;
                while (e == null && i > 0)
                    e = t[--i];
                entry = e;
                index = i;
                if (e == null) {
                    currentKey = null;
                    return false;
                }
                nextKey = e.get(); // hold on to key in strong ref
                if (nextKey == null)
                    entry = entry.next;
            }
            return true;
        }

        // 获取下一个元素
        protected Entry nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (nextKey == null && !hasNext())
                throw new NoSuchElementException();

            lastReturned = entry;
            entry = entry.next;
            currentKey = nextKey;
            nextKey = null;
            return lastReturned;
        }

        // 删除当前元素
        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            WeakHashMap.this.remove(currentKey);
            expectedModCount = modCount;
            lastReturned = null;
            currentKey = null;
        }

    }

    // value的迭代器
    private class ValueIterator extends HashIterator {
        public V next() {
            return nextEntry().value;
        }
    }

    // key的迭代器
    private class KeyIterator extends HashIterator {
        public K next() {
            return nextEntry().getKey();
        }
    }

    // Entry的迭代器
    private class EntryIterator extends HashIterator> {
        public Map.Entry next() {
            return nextEntry();
        }
    }

    // WeakHashMap的Entry对应的集合
    private transient Set> entrySet = null;

    // 返回“key的集合”,实际上返回一个“KeySet对象”
    public Set keySet() {
        Set ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    // Key对应的集合
    // KeySet继承于AbstractSet,说明该集合中没有重复的Key。
    private class KeySet extends AbstractSet {
        public Iterator iterator() {
            return new KeyIterator();
        }

        public int size() {
            return WeakHashMap.this.size();
        }

        public boolean contains(Object o) {
            return containsKey(o);
        }

        public boolean remove(Object o) {
            if (containsKey(o)) {
                WeakHashMap.this.remove(o);
                return true;
            }
            else
                return false;
        }

        public void clear() {
            WeakHashMap.this.clear();
        }
    }

    // 返回“value集合”,实际上返回的是一个Values对象
    public Collection values() {
        Collection vs = values;
        return (vs != null ?  vs : (values = new Values()));
    }

    // “value集合”
    // Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,
    // Values中的元素能够重复。因为不同的key可以指向相同的value。
    private class Values extends AbstractCollection {
        public Iterator iterator() {
            return new ValueIterator();
        }

        public int size() {
            return WeakHashMap.this.size();
        }

        public boolean contains(Object o) {
            return containsValue(o);
        }

        public void clear() {
            WeakHashMap.this.clear();
        }
    }

    // 返回“WeakHashMap的Entry集合”
    // 它实际是返回一个EntrySet对象
    public Set> entrySet() {
        Set> es = entrySet;
        return es != null ? es : (entrySet = new EntrySet());
    }

    // EntrySet对应的集合
    // EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
    private class EntrySet extends AbstractSet> {
        public Iterator> iterator() {
            return new EntryIterator();
        }

        // 是否包含“值(o)”
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k = e.getKey();
            Entry candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }

        // 删除“值(o)”
        public boolean remove(Object o) {
            return removeMapping(o) != null;
        }

        // 返回WeakHashMap的大小
        public int size() {
            return WeakHashMap.this.size();
        }

        // 清空WeakHashMap
        public void clear() {
            WeakHashMap.this.clear();
        }

        // 拷贝函数。将WeakHashMap中的全部元素都拷贝到List中
        private List> deepCopy() {
            List> list = new ArrayList>(size());
            for (Map.Entry e : this)
                list.add(new AbstractMap.SimpleEntry(e));
            return list;
        }

        // 返回Entry对应的Object[]数组
        public Object[] toArray() {
            return deepCopy().toArray();
        }

        // 返回Entry对应的T[]数组(T[]我们新建数组时,定义的数组类型)
        public  T[] toArray(T[] a) {
            return deepCopy().toArray(a);
        }
    }
}

说明:
WeakHashMap和HashMap都是通过”拉链法”实现的散列表。它们的源码绝大部分内容都一样,这里就只是对它们不同的部分就是说明。

WeakReference是“弱键”实现的哈希表。它这个“弱键”的目的就是:实现对“键值对”的动态回收。当“弱键”不再被使用到时,GC会回收它,WeakReference也会将“弱键”对应的键值对删除。

“弱键”是一个“弱引用(WeakReference)”,在Java中,WeakReference和ReferenceQueue 是联合使用的。在WeakHashMap中亦是如此:如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。 接着,WeakHashMap会根据“引用队列”,来删除“WeakHashMap中已被GC回收的‘弱键’对应的键值对”。

另外,理解上面思想的重点是通过 expungeStaleEntries() 函数去理解。

WeakHashMap遍历方式

4.1 遍历WeakHashMap的键值对

第一步:根据entrySet()获取WeakHashMap的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是WeakHashMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 获取key
    key = (String)entry.getKey();
        // 获取value
    integ = (Integer)entry.getValue();
}

4.2 遍历WeakHashMap的键

第一步:根据keySet()获取WeakHashMap的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是WeakHashMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
        // 获取key
    key = (String)iter.next();
        // 根据key,获取value
    integ = (Integer)map.get(key);
}

4.3 遍历WeakHashMap的值

第一步:根据value()获取WeakHashMap的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。

// 假设map是WeakHashMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

WeakHashMap示例

import java.util.Iterator;
import java.util.Map;
import java.util.WeakHashMap;
import java.util.Date;
import java.lang.ref.WeakReference;

/**
 * @desc WeakHashMap测试程序
 *
 * @author skywang
 * @email [email protected]
 */
public class WeakHashMapTest {

    public static void main(String[] args) throws Exception {
        testWeakHashMapAPIs();
    }

    private static void testWeakHashMapAPIs() {
        // 初始化3个“弱键”
        String w1 = new String("one");
        String w2 = new String("two");
        String w3 = new String("three");
        // 新建WeakHashMap
        Map wmap = new WeakHashMap();

        // 添加键值对
        wmap.put(w1, "w1");
        wmap.put(w2, "w2");
        wmap.put(w3, "w3");

        // 打印出wmap
        System.out.printf("\nwmap:%s\n",wmap );

        // containsKey(Object key) :是否包含键key
        System.out.printf("contains key two : %s\n",wmap.containsKey("two"));
        System.out.printf("contains key five : %s\n",wmap.containsKey("five"));

        // containsValue(Object value) :是否包含值value
        System.out.printf("contains value 0 : %s\n",wmap.containsValue(new Integer(0)));

        // remove(Object key) : 删除键key对应的键值对
        wmap.remove("three");

        System.out.printf("wmap: %s\n",wmap );



        // ---- 测试 WeakHashMap 的自动回收特性 ----

        // 将w1设置null。
        // 这意味着“弱键”w1再没有被其它对象引用,调用gc时会回收WeakHashMap中与“w1”对应的键值对
        w1 = null;
        // 内存回收。这里,会回收WeakHashMap中与“w1”对应的键值对
        System.gc();

        // 遍历WeakHashMap
        Iterator iter = wmap.entrySet().iterator();
        while (iter.hasNext()) {
            Map.Entry en = (Map.Entry)iter.next();
            System.out.printf("next : %s - %s\n",en.getKey(),en.getValue());
        }
        // 打印WeakHashMap的实际大小
        System.out.printf(" after gc WeakHashMap size:%s\n", wmap.size());
    }
}
/*
wmap:{three=w3, one=w1, two=w2}
contains key two : true
contains key five : false
contains value 0 : false
wmap: {one=w1, two=w2}
next : two - w2
 after gc WeakHashMap size:1
 */

Map总结

Map框架

Map的框架图。
Java基础之Map实现篇_第5张图片

Map概括

  1. Map 是“键值对”映射的抽象接口。
  2. AbstractMap 实现了Map中的绝大部分函数接口。它减少了“Map的实现类”的重复编码。
  3. SortedMap 有序的“键值对”映射接口。
  4. NavigableMap 是继承于SortedMap的,支持导航函数的接口
  5. HashMap, Hashtable, TreeMap, WeakHashMap这4个类是“键值对”映射的实现类。它们各有区别!

 HashMap 是基于“拉链法”实现的散列表。一般用于单线程程序中。   
Hashtable也是基于“拉链法”实现的散列表。它一般用于多线程程序中。  
WeakHashMap 也是基于“拉链法”实现的散列表,它一般也用于单线程程序中。相比HashMap,WeakHashMap中的键是“弱键”,当“弱键”被GC回收时,它对应的键值对也会被从WeakHashMap中删除;而HashMap中的键是强键。
TreeMap 是有序的散列表,它是通过红黑树实现的。它一般用于单线程中存储有序的映射。

HashMap和Hashtable异同

相同点

HashMap和Hashtable都是存储“键值对(key-value)”的散列表,而且都是采用拉链法实现的。

存储的思想都是:通过table数组存储,数组的每一个元素都是一个Entry;而一个Entry就是一个单向链表,Entry链表中的每一个节点就保存了key-value键值对数据。

添加key-value键值对:首先,根据key值计算出哈希值,再计算出数组索引(即,该key-value在table中的索引)。然后,根据数组索引找到Entry(即,单向链表),再遍历单向链表,将key和链表中的每一个节点的key进行对比。若key已经存在Entry链表中,则用该value值取代旧的value值;若key不存在Entry链表中,则新建一个key-value节点,并将该节点插入Entry链表的表头位置。

删除key-value键值对:删除键值对,相比于“添加键值对”来说,简单很多。首先,还是根据key计算出哈希值,再计算出数组索引(即,该key-value在table中的索引)。然后,根据索引找出Entry(即,单向链表)。若节点key-value存在与链表Entry中,则删除链表中的节点即可。

上面介绍了HashMap和Hashtable的相同点。正是由于它们都是散列表,我们关注更多的是“它们的区别,以及它们分别适合在什么情况下使用”。那接下来,我们先看看它们的区别。

* 不同点*

1 继承和实现方式不同

HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。

Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。

HashMap的定义:

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable { ... }

Hashtable的定义:

public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable { ... }

从中,我们可以看出:

1.1 HashMap和Hashtable都实现了Map、Cloneable、java.io.Serializable接口。

  实现了Map接口,意味着它们都支持key-value键值对操作。支持“添加key-value键值对”、“获取key”、“获取value”、“获取map大小”、“清空map”等基本的key-value键值对操作。
  实现了Cloneable接口,意味着它能被克隆。
  实现了java.io.Serializable接口,意味着它们支持序列化,能通过序列化去传输。

1.2 HashMap继承于AbstractMap,而Hashtable继承于Dictionary

  Dictionary是一个抽象类,它直接继承于Object类,没有实现任何接口。Dictionary类是JDK 1.0的引入的。虽然Dictionary也支持“添加key-value键值对”、“获取value”、“获取大小”等基本操作,但它的API函数比Map少;而且             Dictionary一般是通过Enumeration(枚举类)去遍历,Map则是通过Iterator(迭代器)去遍历。 然而‘由于Hashtable也实现了Map接口,所以,它即支持Enumeration遍历,也支持Iterator遍历。关于这点,后面还会进一步说明。

  AbstractMap是一个抽象类,它实现了Map接口的绝大部分API函数;为Map的具体实现类提供了极大的便利。它是JDK 1.2新增的类。

2 线程安全不同

Hashtable的几乎所有函数都是同步的,即它是线程安全的,支持多线程。
而HashMap的函数则是非同步的,它不是线程安全的。若要在多线程中使用HashMap,需要我们额外的进行同步处理。 对HashMap的同步处理可以使用Collections类提供的synchronizedMap静态方法,或者直接使用JDK 5.0之后提供的java.util.concurrent包里的ConcurrentHashMap类。

3 对null值的处理不同

HashMap的key、value都可以为null。当HashMap的key为null时,HashMap会将其固定的插入table[0]位置(即HashMap散列表的第一个位置);而且table[0]处只会容纳一个key为null的值,当有多个key为null的值插入的时候,table[0]会保留最后插入的value

Hashtable的key、value都不可以为null。否则,会抛出异常NullPointerException。

4 支持的遍历种类不同
HashMap只支持Iterator(迭代器)遍历。

而Hashtable支持Iterator(迭代器)和Enumeration(枚举器)两种方式遍历。

Enumeration 是JDK 1.0添加的接口,只有hasMoreElements(), nextElement() 两个API接口,不能通过Enumeration()对元素进行修改 。
而Iterator 是JDK 1.2才添加的接口,支持hasNext(), next(), remove() 三个API接口。HashMap也是JDK 1.2版本才添加的,所以用Iterator取代Enumeration,HashMap只支持Iterator遍历。

5 通过Iterator迭代器遍历时,遍历的顺序不同

HashMap是“从前向后”的遍历数组;再对数组具体某一项对应的链表,从表头开始进行遍历。
Hashtable是“从后往前”的遍历数组;再对数组具体某一项对应的链表,从表头开始进行遍历。

HashMap 和Hashtable 遍历”key-value集合”的方式是:(01) 通过entrySet()获取“Map.Entry集合”。 (02) 通过iterator()获取“Map.Entry集合”的迭代器,再进行遍历。

HashMap的实现方式:先“从前向后”的遍历数组;对数组具体某一项对应的链表,则从表头开始往后遍历。

// 返回“HashMap的Entry集合”
public Set> entrySet() {
    return entrySet0();
}
// 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
private Set> entrySet0() {
    Set> es = entrySet;
    return es != null ? es : (entrySet = new EntrySet());
}
// EntrySet对应的集合
// EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    ...
    public Iterator> iterator() {
        return newEntryIterator();
    }
    ...
}
// 返回一个“entry迭代器”
Iterator> newEntryIterator()   {
    return new EntryIterator();
}
// Entry的迭代器
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
    public Map.Entry next() {
        return nextEntry();
    }
}
private abstract class HashIterator<E> implements Iterator<E> {
    // 下一个元素
    Entry next;
    // expectedModCount用于实现fail-fast机制。
    int expectedModCount;
    // 当前索引
    int index;
    // 当前元素
    Entry current;

    HashIterator() {
        expectedModCount = modCount;
        if (size > 0) { // advance to first entry
            Entry[] t = table;
            // 将next指向table中第一个不为null的元素。
            // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
            while (index < t.length && (next = t[index++]) == null)
                ;
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    // 获取下一个元素
    final Entry nextEntry() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        Entry e = next;
        if (e == null)
            throw new NoSuchElementException();

        // 注意!!!
        // 一个Entry就是一个单向链表
        // 若该Entry的下一个节点不为空,就将next指向下一个节点;
        // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
        if ((next = e.next) == null) {
            Entry[] t = table;
            while (index < t.length && (next = t[index++]) == null)
                ;
        }
        current = e;
        return e;
    }

    ...
}

Hashtable的实现方式:先从“后向往前”的遍历数组;对数组具体某一项对应的链表,则从表头开始往后遍历。

public Set> entrySet() {
    if (entrySet==null)
        entrySet = Collections.synchronizedSet(new EntrySet(), this);
    return entrySet;
}

private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public Iterator> iterator() {
        return getIterator(ENTRIES);
    }
    ...
}

private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
    // 指向Hashtable的table
    Entry[] table = Hashtable.this.table;
    // Hashtable的总的大小
    int index = table.length;
    Entry entry = null;
    Entry lastReturned = null;
    int type;

    // Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
    // iterator为true,表示它是迭代器;否则,是枚举类。
    boolean iterator;

    // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
    protected int expectedModCount = modCount;

    Enumerator(int type, boolean iterator) {
        this.type = type;
        this.iterator = iterator;
    }

    // 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
    public boolean hasMoreElements() {
        Entry e = entry;
        int i = index;
        Entry[] t = table;
        /* Use locals for faster loop iteration */
        while (e == null && i > 0) {
            e = t[--i];
        }
        entry = e;
        index = i;
        return e != null;
    }

    // 获取下一个元素
    // 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
    // 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
    // 然后,依次向后遍历单向链表Entry。
    public T nextElement() {
        Entry et = entry;
        int i = index;
        Entry[] t = table;
        /* Use locals for faster loop iteration */
        while (et == null && i > 0) {
            et = t[--i];
        }
        entry = et;
        index = i;
        if (et != null) {
            Entry e = lastReturned = entry;
            entry = e.next;
            return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
        }
        throw new NoSuchElementException("Hashtable Enumerator");
    }

    // 迭代器Iterator的判断是否存在下一个元素
    // 实际上,它是调用的hasMoreElements()
    public boolean hasNext() {
        return hasMoreElements();
    }

    // 迭代器获取下一个元素
    // 实际上,它是调用的nextElement()
    public T next() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        return nextElement();
    }

    ...

}

6 容量的初始值 和 增加方式都不一样

HashMap默认的容量大小是16;增加容量时,每次将容量变为“原始容量x2”。

Hashtable默认的容量大小是11;增加容量时,每次将容量变为“原始容量x2 + 1”。

HashMap默认的“加载因子”是0.75, 默认的容量大小是16。

// 默认的初始容量是16,必须是2的幂。
static final int DEFAULT_INITIAL_CAPACITY = 16;

// 默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

当HashMap的 “实际容量” >= “阈值”时,(阈值 = 总的容量 * 加载因子),就将HashMap的容量翻倍。

// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
    // 保存“bucketIndex”位置的值到“e”中
    Entry e = table[bucketIndex];
    // 设置“bucketIndex”位置的元素为“新Entry”,
    // 设置“e”为“新Entry的下一个节点”
    table[bucketIndex] = new Entry(hash, key, value, e);
    // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
    if (size++ >= threshold)
        resize(2 * table.length);
}

Hashtable默认的“加载因子”是0.75, 默认的容量大小是11。

// 默认构造函数。
 public Hashtable() {
     // 默认构造函数,指定的容量大小是11;加载因子是0.75
     this(11, 0.75f);
 }

当Hashtable的 “实际容量” >= “阈值”时,(阈值 = 总的容量 x 加载因子),就将变为“原始容量x2 + 1”。

// 调整Hashtable的长度,将长度变成原来的(2倍+1)
// (01) 将“旧的Entry数组”赋值给一个临时变量。
// (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”
// (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中
protected void rehash() {
    int oldCapacity = table.length;
    Entry[] oldMap = table;

    int newCapacity = oldCapacity * 2 + 1;
    Entry[] newMap = new Entry[newCapacity];

    modCount++;
    threshold = (int)(newCapacity * loadFactor);
    table = newMap;

    for (int i = oldCapacity ; i-- > 0 ;) {
        for (Entry old = oldMap[i] ; old != null ; ) {
            Entry e = old;
            old = old.next;

            int index = (e.hash & 0x7FFFFFFF) % newCapacity;
            e.next = newMap[index];
            newMap[index] = e;
        }
    }
}

7 添加key-value时的hash值算法不同

HashMap添加元素时,是使用自定义的哈希算法。

Hashtable没有自定义哈希算法,而直接采用的key的hashCode()。

HashMap添加元素时,是使用自定义的哈希算法。

static int hash(int h) {
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

// 将“key-value”添加到HashMap中
public V put(K key, V value) {
    // 若“key为null”,则将该键值对添加到table[0]中。
    if (key == null)
        return putForNullKey(value);
    // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
    int hash = hash(key.hashCode());
    int i = indexFor(hash, table.length);
    for (Entry e = table[i]; e != null; e = e.next) {
        Object k;
        // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    // 若“该key”对应的键值对不存在,则将“key-value”添加到table中
    modCount++;
    addEntry(hash, key, value, i);
    return null;
}

Hashtable没有自定义哈希算法,而直接采用的key的hashCode()。

public synchronized V put(K key, V value) {
    // Hashtable中不能插入value为null的元素!!!
    if (value == null) {
        throw new NullPointerException();
    }

    // 若“Hashtable中已存在键为key的键值对”,
    // 则用“新的value”替换“旧的value”
    Entry tab[] = table;
    int hash = key.hashCode();
    int index = (hash & 0x7FFFFFFF) % tab.length;
    for (Entry e = tab[index] ; e != null ; e = e.next) {
        if ((e.hash == hash) && e.key.equals(key)) {
            V old = e.value;
            e.value = value;
            return old;
            }
    }

    // 若“Hashtable中不存在键为key的键值对”,
    // (01) 将“修改统计数”+1
    modCount++;
    // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
    //  则调整Hashtable的大小
    if (count >= threshold) {
        // Rehash the table if the threshold is exceeded
        rehash();

        tab = table;
        index = (hash & 0x7FFFFFFF) % tab.length;
    }

    // (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
    Entry e = tab[index];
    // (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。        
    tab[index] = new Entry(hash, key, value, e);
    // (05) 将“Hashtable的实际容量”+1
    count++;
    return null;
}

8 部分API不同

Hashtable支持contains(Object value)方法,而且重写了toString()方法;
而HashMap不支持contains(Object value)方法,没有重写toString()方法。

最后,再说说“HashMap和Hashtable”使用的情景。

其实,若了解它们之间的不同之处后,可以很容易的区分根据情况进行取舍。例如:(01) 若在单线程中,我们往往会选择HashMap;而在多线程中,则会选择Hashtable。(02),若不能插入null元素,则选择Hashtable;否则,可以选择HashMap。

但这个不是绝对的标准。例如,在多线程中,我们可以自己对HashMap进行同步,也可以选择ConcurrentHashMap。当HashMap和Hashtable都不能满足自己的需求时,还可以考虑新定义一个类,继承或重新实现散列表;当然,一般情况下是不需要的了。

HashMap和WeakHashMap异同

相同点

  1. 它们都是散列表,存储的是“键值对”映射。
  2. 它们都继承于AbstractMap,并且实现Map基础。
  3. 它们的构造函数都一样。
  4. 它们都包括4个构造函数,而且函数的参数都一样。
  5. 默认的容量大小是16,默认的加载因子是0.75。
  6. 它们的“键”和“值”都允许为null。
  7. 它们都是“非同步的”。

不同点

1 HashMap实现了Cloneable和Serializable接口,而WeakHashMap没有。
HashMap实现Cloneable,意味着它能通过clone()克隆自己。
HashMap实现Serializable,意味着它支持序列化,能通过序列化去传输。

2 HashMap的“键”是“强引用(StrongReference)”,而WeakHashMap的键是“弱引用(WeakReference)”。
WeakReference的“弱键”能实现WeakReference对“键值对”的动态回收。当“弱键”不再被使用到时,GC会回收它,WeakReference也会将“弱键”对应的键值对删除。
这个“弱键”实现的动态回收“键值对”的原理呢?其实,通过WeakReference(弱引用)和ReferenceQueue(引用队列)实现的。 首先,我们需要了解WeakHashMap中:
第一,“键”是WeakReference,即key是弱键。
第二,ReferenceQueue是一个引用队列,它是和WeakHashMap联合使用的。当弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。 WeakHashMap中的ReferenceQueue是queue。
第三,WeakHashMap是通过数组实现的,我们假设这个数组是table。
接下来,说说“动态回收”的步骤。

  1. 新建WeakHashMap,将“键值对”添加到WeakHashMap中。
    将“键值对”添加到WeakHashMap中时,添加的键都是弱键。
    实际上,WeakHashMap是通过数组table保存Entry(键值对);每一个Entry实际上是一个单向链表,即Entry是键值对链表。
  2. 当某“弱键”不再被其它对象引用,并被GC回收时。在GC回收该“弱键”时,这个“弱键”也同时会被添加到queue队列中。

    例如,当我们在将“弱键”key添加到WeakHashMap之后;后来将key设为null。这时,便没有外部外部对象再引用该了key。
    
    接着,当Java虚拟机的GC回收内存时,会回收key的相关内存;同时,将key添加到queue队列中。
    
  3. 当下一次我们需要操作WeakHashMap时,会先同步table和queue。table中保存了全部的键值对,而queue中保存被GC回收的“弱键”;同步它们,就是删除table中被GC回收的“弱键”对应的键值对。

    例如,当我们“读取WeakHashMap中的元素或获取WeakReference的大小时”,它会先同步table和queue,目的是“删除table中被GC回收的‘弱键’对应的键值对”。删除的方法就是逐个比较“table中元素的‘键’和queue中的‘键’”,若它们相当,则删除“table中的该键值对”。

你可能感兴趣的:(java基础)