ACM模板——平衡二叉树(插入、删除、创建、遍历、判断完全二叉树)

理论模板: 

#include
#include

#define mem(a,b) memset(a,b,sizeof a)
#define INF 3f3f3f3f

using namespace std;

typedef long long ll;

// 平衡二叉树结点
template 
struct AvlNode
{
    T data;
    int height; // 结点所在高度
    AvlNode *left;
    AvlNode *right;
    AvlNode(const T theData):data(theData),left(NULL),right(NULL),height(0){}
};

// AvlTree
template 
class AvlTree
{
public:
    AvlNode *root;
    AvlTree():root(NULL){}
    ~AvlTree(){}

    void Insert(AvlNode *&t,T x); // 插入结点
    bool Delete(AvlNode *&t,T x); // 删除结点
    bool Contains(AvlNode *t,const T x) const; // 查找是否存在给定值的结点
    void InorderTraversal(AvlNode *t); // 中序遍历
    void PreorderTraversal(AvlNode *t); // 前序遍历
    AvlNode *FindMin(AvlNode *t) const; // 最小值结点
    AvlNode *FindMax(AvlNode *t) const; // 最大值结点

private:
    int GetHeight(AvlNode *t);  // 求树的高度
    AvlNode *LL(AvlNode *t); // 单旋转 左
    AvlNode *RR(AvlNode *t); // 单旋转 右
    AvlNode *LR(AvlNode *t); // 双旋转 右左
    AvlNode *RL(AvlNode *t); // 双旋转 左右
};

// 查找最大结点
template 
AvlNode *AvlTree::FindMax(AvlNode *t) const
{
    if(t==NULL)
        return NULL;
    if(t->right==NULL)
        return t;
    return FindMax(t->right);
}

// 查找最小结点
template 
AvlNode *AvlTree::FindMin(AvlNode *t) const
{
    if(t==NULL)
        return NULL;
    if(t->left==NULL)
        return t;
    return FindMin(t->left);
}

// 获取高度
template 
int AvlTree::GetHeight(AvlNode *t)
{
    if(t==NULL)
        return -1;
    return t->height;
}

// 单旋转
// 左左插入导致不平衡
template 
AvlNode *AvlTree::LL(AvlNode *t)
{
    AvlNode *q=t->left;
    t->left=q->right;
    q->right=t;
    t->height=max(GetHeight(t->left),GetHeight(t->right))+1;
    q->height=max(GetHeight(q->left),GetHeight(q->right))+1;
    // 注意1:并不是没有连结操作,因为 q 是一个新的 AvlNode,所以在这里返回的时候就连结上这个新修改好的地址
    // 注意2:因为地址改变了,它儿子结点原来连的旧地址被更新后会不会断了?不会,因为上面在操作这个更新了
    // 注意3:因为地址改变了,新的根结点 q 如何连结原来它的父亲结点?把以上整个更新完后的最新根节点 q,把它们看为一个整体(结点~相当于叶子结点),返回的时候就在做这个覆盖旧的根 t 结点的地址
    // 注意4:如果注意2、3还没明白的话看:本博客【基础知识 - 指针篇 - 案例二】
    return q;
}

// 单旋转
// 右右插入导致不平衡
template 
AvlNode *AvlTree::RR(AvlNode *t)
{
    AvlNode *q=t->right;
    t->right=q->left;
    q->left=t;
    t->height=max(GetHeight(t->left),GetHeight(t->right))+1;
    q->height=max(GetHeight(q->left),GetHeight(q->right))+1;
    return q;
}

// 双旋转
// 插入点位于 t 的左儿子的右子树
template 
AvlNode *AvlTree::LR(AvlNode *t)
{
    // 双旋转可以通过两次单旋转实现
    // 对 t 的左结点进行RR旋转,再对根节点进行LL旋转
    // 记忆法:LR --> RR+LL // 先RR再LL,类似Stack - FILO
    RR(t->left);
    return LL(t);
}

// 双旋转
// 插入点位于 t 的右儿子的左子树
template 
AvlNode *AvlTree::RL(AvlNode *t)
{
    LL(t->right);
    return RR(t);
}

// 插入
template 
void AvlTree::Insert(AvlNode *&t,T x)
{
    if(t==NULL)
    {
        t=new AvlNode(x); // 新生成的自动连结父亲
    }
    else if(xdata)
    {
        Insert(t->left,x);
        // 判断平衡情况
        if(GetHeight(t->left)-GetHeight(t->right)>1)
        {
            // 分两种情况:左左 or 左右
            if(xleft->data) // 左左
                t=LL(t);
            else                // 左右
                t=LR(t);
        }
    }
    else if(x>t->data)
    {
        Insert(t->right,x);
        if(GetHeight(t->right)-GetHeight(t->left)>1)
        {
            if(x>t->right->data)
                t=RR(t);
            else
                t=RL(t);
        }
    }
    else
        ; // 数据重复,看情况处理

    // 不能把以下此代码移动到 t==NULL 里,因为其他 (else if)'s t 还需要更新
    t->height=max(GetHeight(t->left),GetHeight(t->right))+1;
}

// 删除
template 
bool AvlTree::Delete(AvlNode *&t,T x)
{
    // t 为空,未找到要删除的结点
    if(t==NULL)
        return false;
    // 找到要删除的结点
    else if(t->data==x)
    {
        // 左右子树都非空
        if(t->left!=NULL && t->right!=NULL)
        {
            // 在高度更大的那个子树上进行删除操作
            // 左子树高度更大,则删除左子树中data最大的结点,将其赋给根节点
            if(GetHeight(t->left)>GetHeight(t->right))
            {
                t->data=FindMax(t->left)->data;
                Delete(t->left,t->data);
            }
            else // 右子树高度更大,则删除右子树中data最小的结点,将其赋给根节点
            {
                t->data=FindMin(t->right)->data;
                Delete(t->right,t->data);
            }
        }
        else
        {
            // 左右子树右一个不为空(或左右子树都为空),直接用需要删除的结点的子结点替换即可
            AvlNode *old=t;
            // 当左右子树右一个不为空,则 t 赋值为不空的子结点
            // 当左右子树都为空,则随意
            t=t->left?t->left:t->right;
            delete old;
        }
    }
    // 要删除的结点在左子树上
    else if(xdata)
    {
        // 递归删除左子树上的结点
        Delete(t->left,x);
        // 判断是否仍然满足平衡条件
        if(GetHeight(t->right)-GetHeight(t->left)>1)
        {
            if(GetHeight(t->right->left)>GetHeight(t->right->right))
            {
                t=RL(t);
            }
            else
            {
                t=RR(t);
            }
        }
        else // 满足平衡条件,调整高度信息
        {
            t->height=max(GetHeight(t->left),GetHeight(t->right))+1;
        }
    }
    // 要删除的结点在右子树上
    else
    {
        Delete(t->right,x);
        if(GetHeight(t->left)-GetHeight(t->right)>1)
        {
            if(GetHeight(t->left->right)>GetHeight(t->left->left))
            {
                t=LR(t);
            }
            else
            {
                t=LL(t);
            }
        }
        else // 满足平衡条件,调整高度信息
        {
            t->height=max(GetHeight(t->left),GetHeight(t->right))+1;
        }
    }

    return true;
}

// 查找结点
template 
bool AvlTree::Contains(AvlNode *t,const T x) const
{
    if(t==NULL)
        return false;
    if(xdata)
        return Contains(t->left,x);
    else if(x>t->data)
        return Contains(t->right,x);
    else
        return true;
}

// 中序遍历
template 
void AvlTree::InorderTraversal(AvlNode *t)
{
    if(t)
    {
        InorderTraversal(t->left);
        printf("%d ",t->data);
        InorderTraversal(t->right);
    }
}

// 前序遍历
template 
void AvlTree::PreorderTraversal(AvlNode *t)
{
    if(t)
    {
        printf("%d ",t->data);
        PreorderTraversal(t->left);
        PreorderTraversal(t->right);
    }
}

// 显示中序+前序遍历结果
template 
void showTraversal(AvlTree &tree)
{
    printf("中序遍历:");
    tree.InorderTraversal(tree.root);

    printf("\n前序遍历:");
    tree.PreorderTraversal(tree.root);
}

// 测试数据:18 14 20 12 16 1 -1

int main()
{
    AvlTree tree;
    int val,tmp;
    printf("请输入整数建立二叉树(-1 end):\n");
    while(~scanf("%d",&val))
    {
        if(val==-1)
            break;
        tree.Insert(tree.root,val);
    }

    showTraversal(tree);

    printf("\n请输入要查找的结点: ");
    scanf("%d",&tmp);
    if(tree.Contains(tree.root,tmp))
        printf("已找到\n");
    else
        printf("不存在\n");

    printf("请输入要删除的结点: ");
    scanf("%d",&tmp);
    tree.Delete(tree.root,tmp);

    showTraversal(tree);

    return 0;
}

ACM模板——平衡二叉树(插入、删除、创建、遍历、判断完全二叉树)_第1张图片

 

ACM 模板: 

#include
#include

#define mem(a,b) memset(a,b,sizeof a);
#define INF 0x3f3f3f3f
#define MOD 1000000007

using namespace std;

typedef long long ll;

struct node
{
    int val;
    node *left,*right; // default NULL
};

vector v;
int after, isComp;

node *LL(node *tree)
{
    node *tmp=tree->right;
    tree->right=tmp->left;
    tmp->left=tree;
    return tmp;
}

node *RR(node *tree)
{
    node *tmp=tree->left;
    tree->left=tmp->right;
    tmp->right=tree;
    return tmp;
}

node *LR(node *tree)
{
    tree->left=LL(tree->left);
    tree=RR(tree);
    return tree;
}

node *RL(node *tree)
{
    tree->right=RR(tree->right);
    tree=LL(tree);
    return tree;
}

int getHeight(node *tree)
{
    if(tree==NULL) return 0;
    int l=getHeight(tree->left), r=getHeight(tree->right);
    return l>r ? l+1 : r+1;
}

node *insert(node *tree, int val)
{
    if(tree==NULL)
    {
        tree=new node();
        tree->val=val;
//        tree->left=tree->right=NULL;
        return tree;
    }

    if(tree->val>val)
    {
        tree->left=insert(tree->left,val);
        int l=getHeight(tree->left), r=getHeight(tree->right);
        if(l-r>=2)
            if(tree->left->val > val) tree=RR(tree);
            else tree=LR(tree);
    }
    else
    {
        tree->right=insert(tree->right,val);
        int l=getHeight(tree->left), r=getHeight(tree->right);
        if(r-l>=2)
            if(tree->right->val < val) tree=LL(tree);
            else tree=RL(tree);
    }

    return tree;
}

// 层序遍历 + 判断是否完全二叉树
void bfs(node *tree)
{
    v.clear();
    queue q;
    q.push(tree);

    after=0, isComp=1;
    while(!q.empty())
    {
        tree=q.front(); q.pop();
        v.push_back(tree->val);
        if(tree->left!=NULL)
        {
            if(after) isComp=0;
            q.push(tree->left);
        }
        else after=1;

        if(tree->right!=NULL)
        {
            if(after) isComp=0;
            q.push(tree->right);
        }
        else after=1;
    }
}

int main()
{
    int n,val;
    while(~scanf("%d",&n))
    {
        node *tree=NULL;
        for(int i=0;i

 

你可能感兴趣的:(#,ACM,#,树,#,ACM,模板)